Upper Hutt City Council – IPI Hearing

S65 – Stephen Pattinson – Expert Evidence (Rev 8)

I am a Registered Architect with over 30 years professional practice experience in New Zealand. Through my occupation as an architect I am reasonably familiar with the RMA including the Resource Management (Enabling Housing Supply and Other Matters) Amendment Act 2021, with the UHCC District Plan (including the NPS structure and format), with the NPS-UD 2020, the MDRS, with Plan Change processes and with the Government's general IPI requirements for Council's.

I have a Master of Architecture Degree in medium density housing, which involved field research at over 200 medium density housing development sites in Auckland, Wellington, Christchurch, Melbourne, London and California. In my occupation as an architect I have worked on a number of medium density housing projects.

I live at 27 Elmslie Road, Pinehaven, Upper Hutt, which has been my family's home for 29 years now, so I am very familiar with Pinehaven and Silverstream and the surrounding area.

I have been very closely involved over the last 10 years or so with the flood modelling and flood mapping of Pinehaven Stream by GWRC and UHCC and their consultants. I am very familiar with the PC42 process and outcomes, and the Pinehaven Streamworks consultation, hearing and outcomes.

Regarding my submission on the UHCC IPI (S65), it has been suggested that parts of my submission are 'beyond scope' or contrary to the Government's requirements for the Council's IPI, and should therefore be rejected.

A primary theme of my submission is the importance of accurate and reliable baseline flood modelling. This is essential for ensuring that people and property are not shown falsely to be in a flood zone; for guiding the selection of land for housing developments so as to avoid or mitigate flood hazard; and also for the purpose of achieving hydraulic neutrality for the proper management of stormwater runoff from housing developments to protect life, property and the environment.

All of this depends on getting the base model right, as accurate and reliable as possible.

This is especially important with increasing housing intensification, more medium density housing, more retirement villages, more impervious urban area, more pressure to build on slope hazard sites.

We have recently witnessed in the 27 January flooding in Auckland and in Cyclone Gabrielle in Coromandel and Hawkes Bay the disastrous consequences of getting it wrong – houses swept away, fatal land slips, and in the case of Hawkes Bay flood damage exacerbated by slashings and logs from poorly managed plantation forestry harvesting.

Pinehaven has all these potential ingredients for a future disaster of human making. I say of human making because of grossly inaccurate baseline flood modelling for the Pinehaven Stream catchment, because of Council's plans to intensively develop its so-called Southern Growth Area (the high earthquake zone and slip prone Pinehaven hills), and because of plantation forestry on the hills surrounding Pinehaven being harvested right now, from which the residents of Pinehaven have no protection. There is nothing in the UHCC District Plan, nor in the GWRC Pinehaven Floodplain Management Plan, nor in the Government's NES for Plantation Forestry that protects Pinehaven from unmanaged slashings and debris from pine plantation harvesting on the hills around us.

I therefore ask the Hearing Panel to carefully consider the following expert evidence and ensure that the Pinehaven flood modelling is urgently corrected so as to provide a reliable baseline for hydraulic neutrality and thereby prevent a future disaster in Pinehaven of human making:

- 1a. GWRC 100yr flood map 27 Elmslie Rd smoothed
- 1b. COMPARISON GWRC & R J Hall 100yr flood map for 27 Elmslie Road
- 1c. GWRC_100yr flood depths_27 Elmslie Rd
- 2. Robert J Hall CV and evidence for 27 Elmslie Road
- 3a. GWRC locations of Chainages 640 & 650 at 27 Elmslie Rd
- 3b. CDA_Drwg TS01 RevC_Survey Plan with 200mm Contours
- 3c. CDA_Drwg TS04 RevC_GWRC Chainage 650 & 640 locations
- 4a. GWRC locations of channel surveys at 21 & 35 Elmslie Rd
- 4b. Comparison Section MM with GWRC Interpolated Section at Chainage 650
- 4c. Comparison Section YY with GWRC Interpolated Section at Chainage 640
- 5a. Case Study #1_27 Elmslie Road
- 5b. Case Study #1_27 Elmslie Road Calculated 100yr flow
- 5c. Case Study #1_27 Elmslie Road GWRC mapped 100yr flow
- 5d. Case-Studies #2, 3 & 4_Calculated vs mapped 100yr flow
- 6a. SKM 2010_Future Case Scenario
- 6b. Petition for Pinehaven Stream Flood Mapping Audit 2015

6c. M Law reply to Kristin Stokes MWH cc M Harkness & M Hooker_RE- Pinehaven Stream hydrology - Existing and Future Development

- 6d. Beca Audit July 2015_MWH explained but Beca didn't disclose
- 7a. 2018.8.10_Graeme Horrell_Letter to SOH re 1976 flood in Pinehaven_FINAL
- 7b. Stormwater infrastructure improvements after 1976 flood
- 7c. Eyewitness accounts of 20 December 1976 flood extents in Pinehaven and Silverstream
- 7d. How have the Pinehaven Flood Maps been so grossly inflated?
- 8a. AK Ross Evidence 27 July 2020 re Infiltration Tests
- 8b. AK Roos Appendix 1 Infiltration Results
- 8c. AK Ross Appendix 2 Single Tube Infiltration Tests 27 Elmslie Rd
- 8d. Sponge or Rock?
- 9a. Graeme Horrell_Revised Letter re 23 July 2009 flood_Updated 27-11-2020
- 9b. Graeme Horrell, CV

10a. Pinehaven Sub Catch B hydrology 05.11.2019_FINAL & SIGNED

10b. RJ Hall & Assoc_ADDENDUM A_At-A-Site Evaluation of Appropriate CN Numbers_2019-9-27

10c. SOH (S. Pattinson) - Pinehaven Stream_Time of Concentration

11a. GMacky - Review1911114-2

11b. CV_GHMacky191115

12a. SOH - Pinehaven Storm on 08 December 2019_published 18 Dec 2019; 7 Aug 2020; 25 Nov 2020; 16 April 2023 p5,36,40,41 amended

12b. RJ Hall & Assoc_Letter to Save Our Hills 29 June 2020

12c. Bob Hall evidence on behalf of Save Our Hills - Report Pinehaven flood 8 Dec 2019 Updated 3 August 2020

12d. Bob Hall Report Pinehaven flood 8 Dec 2019_issued 27 July 2020, no change 3 Aug 2020_Figs. 1 2 & 3

12e. Graeme Horrell_Review of Pinehaven Stream flood 8 December 2019 at Chatsworth road gauge site and its implications for flood frequency estimates in the catchment by Robert Hall

13. 2019-12-11_S Pattinson & A Ross_Whaitua Meeting 11-12-19_FINAL clean

14a. 2020-12-02_Bob Hall Memo-Summary of Pinehaven Hydrology, Hydraulic Neutrality and Stream Channel Upgrade_FINAL

14b. 2020-12-02_Bob Hall_Figure 2 Flood Frequency Curves

15. Pinehaven Stream Catchment - RJ Hall Fig.2 - Flood Frequency Curves (simplified)

UHCC S42A Evidence Report, p276 - The S42A Planning Consultant states in his report:

1121. Submission S65.2 - Stephen Pattinson requests that the flood zones in the Pinehaven Stream Catchment Overlay are reassessed using accurate input parameters that are truly representative of the catchment in order to provide flood zones that are genuine qualifying matters. The Pinehaven Stream Catchment Overlay is identified in the District Plan hazard maps, and includes the catchment itself in addition to a stream corridor hazard, overland flow hazard, and ponding hazard. **The relevant natural hazard provisions are proposed to be specifically identified as an existing qualifying matter area.** The submission does not include any technical information that indicates the Council's flood hazard mapping is inaccurate in this area, and I do not have any reason to suspect this to be the case. I therefore recommend submission S65.2 - Stephen Pattinson be rejected.

I therefore set out the technical information for the inaccurate Pinehaven Stream flood modelling in the following table:

Tech	chnical Evidence for the inaccurate and unreliable Pinehaven Stream flood modelling and flood hazard mapping by GWRC and UHCC:			
No.	Item / Evidence	Brief Description		
1a	GWRC 100yr flood map 27 Elmslie Rd	1b. The map by R J Hall shows 100yr flood		
	- smoothed	extent confined to the stream channel; 1a.		
1b	COMPARISON GWRC & R J Hall 100yr	GWRC 100yr flood map shows about a 70m		
	flood map for 27 Elmslie Road	wide flood extent across the property from		
		the street boundary to the foot of the hills.		
1c	GWRC_100yr flood depths_27	1c. Most of GWRC's "flood" is actually not		
	Elmslie Rd	flow but 300mm freeboard inappropriately		
		added to a few millimeters of stormwater.		
2	Robert J Hall – CV and evidence for	Includes Robert (Bob) Hall's CV. Hall para. 23,		
	27 Elmslie Road	<i>"I conclude the flow conditions are in fact</i>		
		wrong and cannot be relied upon." Hall para.		
		27, subtracting 300mm freeboard there is		
		only 11 – 13mm of flow depth on the front		
		lawn. "By no stretch of the imagination could		
		we describe these conditions as hazardous".		
		Summary, Hall para. 33(d), "the deficiencies		
		evident in both the UHCC and GWRC flood		
		hazard maps are likely to be present		
		elsewhere in the catchment and not limited		
		simply to the Pattinson property and		
		accordingly this indicates to me that a critical		
		review needs to be undertaken"		
3a	GWRC locations of Chainages 640 &	3a – GWRC's map of stream on 27 Elmslie Rd		
	650 at 27 Elmslie Rd	and location of 2 cross-sections by GWRC;		
3b	CDA_Drwg TS01 RevC_Survey Plan	3b – Topographical Survey Plan of 27 Elmslie		
	with 200mm Contours	Road by Co-Design Architects Ltd (CDA)		
3c	CDA_Drwg TS04 RevC_GWRC	3c – CDA Survey Plan overlaid on GWRC map		
	Chainage 650 & 640 locations	showing 7.5m horizontal error in GWRC's		
		location of stream bed		

4a	GWRC locations of channel surveys	4a – GWRC's cross-sections at 27 Elmslie Rd	
	at 21 & 35 Elmslie Rd.	(bold yellow lines) are interpolated from	
		channel sections surveyed at 21 & 35 Elmslie	
4b	Comparison CDA Section with GWRC	4b- green line is CDA surveyed cross-section;	
	Interpolated Section at Chainage 650	the red line is GWRC interpolated section –	
		generally 0.5m vertical error in stream bed.	
4c	Comparison Section YY with GWRC	4c – green line is CDA surveyed cross-section;	
	Interpolated Section at Chainage 640	the grey line is GWRC interpolated section,	
		1.8m vertical error and 5m horizontal error	
		in location of stream channel invert when	
		compared with actual channel invert, GWRC	
		show channel invert on BBQ concrete paving	
5a	Case Study #1_27 Elmslie Road	Topography plus calculated and mapped	
		100yr flow must be accurate, but it isn't.	
5b	Case Study #1_27 Elmslie Road -	27 Elmslie Rd, the calculated 100yr flow (by	
	Calculated 100yr flow	GWRC, and confirmed by R J Hall) is 4.8m3/s	
		and is easily contained in the stream channel	
5c	Case Study #1_27 Elmslie Road -	But at 27 Elmslie Rd, GWRC's mapped 100yr	
	GWRC mapped 100yr flow	flow turns out to be about 15m3/s, i.e. about	
		3 times as much as what it should be.	
5d	Case-Studies #2, 3 & 4_Calculated vs	Three other Case Studies, Dunns St (bottom	
	mapped 100yr flow	of catchment), Pinehaven Reserve (middle of	
		catchment), and 142 Pinehaven Road (top of	
		catchment) all likewise show at least 3 times	
		more flow in the flood maps than the 100yr	
		flow calculated by GWRC for each location.	
6a	SKM 2010_Future Case Scenario	SKM test the impact of unmitigated runoff	
		from possible 1,665 new houses on hills and	
		find no increase in flooding in Pinehaven.	
6b	Petition for Pinehaven Stream Flood	Public challenge future case scenario finding.	
	Mapping Audit 2015	260 residents sign petition for independent,	
		transparent audit of Pinehaven flood maps;	
		Public request Depth x Velocity flood maps.	

6c	M Law reply to Kristin Stokes MWH	Unbeknown to the public (because it wasn't	
	cc M Harkness & M Hooker_RE-	reported in the Beca flood mapping audit),	
	Pinehaven Stream hydrology -	MWH explained to the Auditor why it was	
	Existing and Future Development	that the future case modelling surprisingly	
		showed no increase in flooding in Pinehaven.	
		It was because inputs in the 'before 1,665	
		new houses' model were the same as inputs	
		in the 'after 1,665 new houses' model, hence	
		no extra flooding showed up in Pinehaven	
		from 1,665 new houses on the hills. Clearly	
		this modelling is fatally flawed, because	
		adding 1,665 houses dramatically changes	
		the hills from highly absorbent forest to large	
		areas of impervious roofs, roads, footpaths	
		and driveways. The model inputs for the	
		'before' and 'after' situations should not be	
		the same but should be very different. The	
		future case modelling should have shown an	
6d	Beca Audit July 2015_MWH	enormous increase of flooding in Pinehaven.	
	explained but Beca didn't disclose	The Auditor did not disclose this but instead	
		repeatedly (and falsely) stated in the Audit	
		that MWH were not able to explain the lack	
		of expected increase in flooding in SKM's	
		modelling of 1,665 new houses on the hills.	
		Instead of reporting the flood modelling as	
		fatally flawed and rectifying it, the Audit	
		misleads the public into thinking the flood	
		model and flood maps are fit for purpose.	
7a	2018.8.10_Graeme Horrell_Letter to	The 20 December 1976 flood in Pinehaven	
	SOH re 1976 flood in Pinehaven -	and Silverstream peaked at about 30m3/s	
	FINAL	and was a 500 – 3,000yr flood event, not a	
		100yr flood as GWRC claims. Flood extents in	
		1976 were far greater than a 100yr flood.	

_					
	7b	Stormwater infrastructure	Major investment was made by Council in		
		improvements after 1976 flood	the 1980's and early 1990's to improve		
			stormwater management in Pinehaven and		
			Silverstream, including a very large new		
			drainpipe down Whitemans Road to Hulls		
			Creek, and a retention dam in Heretaunga.		
			Instead of Council's flood modelling showing		
			any improvement from this investment, their		
	7c	Eyewitness accounts of 20 December	supposed 100yr flood extent maps go way		
		1976 flood extents in Pinehaven and	beyond 500-3,000yr flood extents observed		
		Silverstream.	by many eye-witnesses of the 1976 flood.		
			GWRC's 100yr flood extents have been		
	7d	How have the Pinehaven Flood Maps	grossly inflated by effectively removing all		
		been so grossly inflated?	the 1980s/90s improvements and modelling		
			the forested and highly absorbent Pinehaven		
			catchment as highly impervious. In other		
			words, unmanaged runoff from future		
			intensive housing on the hills has already		
			been built into the current flood maps.		
	8a	A K Ross – Evidence 27 July 200 re	Infiltration tests on the Pinehaven hills by A K		
		Infiltration Tests	Ross find very high infiltration rates from 500		
	8b	AK Ross - Appendix 1 Infiltration	 900 mm/hr. In contrast to this, GWRC 		
		Results	inputs in the current Pinehaven flood model		
	8c	AK Ross - Appendix 2 - Single Tube	are 5mm initial loss and 2mm/hr ongoing		
		Infiltration Tests - 27 Elmslie Rd	loss, in other words, as if the catchment is		
			impervious, like a supermarket carpark. The		
	8d	Sponge or Rock?	modelling is totally wrong because existing		
			catchment is like a sponge, not a rock.		
	9a	Graeme Horrell_Revised Letter re 23	GWRC flood hydrology (by MWH) for		
I		July 2009 flood_Updated 27-11-2020	Pinehaven Stream is based on a single		
			storm 23 July 2009. MWH report that "A		
	9b	Graeme Horrell_CV	high flow event in the Pinehaven Stream		
			on 23 July 2009 is the largest event		
1				1	

available to date to use for calibration.	
Rainfall totals for this event indicate it	
may have reached a 10-year ARI	
magnitude". G Horrell reviewed the	
MWH hydrology report and concluded:	
"It is considered the [MWH] estimated	
flood peak of 8.8 m3/s on 23 July 2009 is	
an under estimation. My estimate of the	
23 July 2009 flood peak is 12 m3/s (based	
upon an estimate of the peak mean	
velocity) which is approximately a 40	
year ARI. Relying on a single flood event	
with an incorrect flow peak coupled with	
the lack of any Pinehaven catchment	
rainfall for calibration, followed by the	
lack of any testing against actual data	
makes their analysis invalid. Any further	
use such as inputs into a hydraulic model	
will result in large errors, as shown in the	
differences in modelled flood extent maps	
with those observed by many in the	
community and water depth at the only	
water level measuring recorder site in the	
catchment. This will unfortunately result	
in unreliable design values for the	
Pinehaven stream works upgrade."	
By seriously underestimating the size of	
the 2009 storm as a 10yr flood event	
when it is actually a 40yr event and using	

		this as the basis for the Pinehaven flood	
		model, GWRC's flood model seriously	
		under-predicts actual flood events. For	
		example, the GWRC 1-in-25 year flood	
		model used for determining the	
		Pinehaven Streamworks has produced	
		streamworks designed with capacity of	
		coping with in excess of a 100-year flood.	
		, , ,	
10a	RJ Hall & Assoc_Pinehaven Sub Catch	Hall & Associates Ltd (RJH) independently	
	B hydrology 05.11.2019_FINAL &	investigated whether Jacobs' (2016)	
	SIGNED	reworkings of the Pinehaven flood modelling	
		corrected the future development hydrology	
10b	RJ Hall & Assoc_ADDENDUM A_At-A-	error by SKM (2010) and found that it didn't	
	Site Evaluation of Appropriate CN	even address the error, that the error is	
	Numbers_2019-9-27	significant and that it still exists in the model:	
		"Jacobs' Memorandum (2016) does not fulfil	
10c	Save Our Hills (S. Pattinson) -	the brief to resolve the future development	
	Pinehaven Stream_Time of	hydrology, and the future development	
	Concentration	hydrology error in the Pinehaven flood	
		modelling has not been addressed or	
		increases (due to future development) being	
		in the order of about 500% to 700% [not 6%]	
		indicated by Becal and conclude that the	
		error in the Pinehaven flood modelling is	
		significant and has not been resolved." (p6)	
		"no reliance should be placed on the	
		efficacy of the flood mapping results that	
		were associated with that earlier work by	
		MWH, SKM, Beca and Jacobs." (p32)	

11a	GMacky - Review1911114-2	Review of report by R J Hall and Assoc Ltd	
		"Pinehaven Stream: ARI 100 Hydrological	
11b	CV_GMackyReview191115	Assessment Various Development Scenarios"	
		November 2019 including ADDENDUM A: At-	
		A-Site Evaluation of Appropriate CN Numbers	
		2019- 9-27 [10a & 10b reports above by Hall]	
		G. Macky, quote:	
		<i>"I concur with Mr Hall's conclusions that</i>	
		Jacobs' runoff volumes are consistent with a	
		Curve Number of 96 for the undeveloped	
		catchment, and average Curve Numbers of	
		97.5 and 97 for development scenarios DS1	
		and DS2 respectively. These Curve Numbers	
		are higher than any recommended values for	
		natural ground surfaces, and are close to the	
		Curve Number specified by TP108 for sealed	
		roads and roofs. It therefore seems likely that	
		Jacobs assumed an exceptionally	
		<i>impervious catchment."</i> (p3)	
		"Conclusions: The general hydrological	
		method adopted in Mr Hall's report is sound,	
		and is now long-established good practice.	
		Mr Hall's choice of Curve Numbers for	
		Catchment B is consistent with the infiltration	
		tests described by Mr Ross in his report the	
		increase in runoff is significant, and	
		mitigation would require detention storage	
		at the development site. Mr Hall's modelling	
		demonstrates the well-known hydrological	
		consequences of urban development: less	
		water is lost to ground, and runoff is quicker,	
		resulting in increased peak flows." (pp3,4)	

12a	SOH - Pinehaven Storm on 08	Report on flooding in Pinehaven and	
	December 2019_published 18 Dec	Silverstream on Sunday 8 December 2019.	
	2019, 7 Aug 2020, 25 Nov 2020,	Experts advise this was a 1-in-30yr rainfall	
	16 April 2023 p5,36,40,41 amended	event and a 1-in-25yr flood event. This event	
		happened during consultation by UHCC &	
12b	12b. RJ Hall & Assoc_Letter to Save	Wellington Water Limited on the Pinehaven	
	Our Hills 29 June 2020	Streamworks. Although WWL extended the	
		hearing while remodelling the catchment	
12c	Bob Hall evidence on behalf of Save	WWL refused to update GWRC's Pinehaven	
	Our Hills - Report Pinehaven flood 8	flood model with this data for the flood on 8	
	Dec 2019 Updated 3 August 2020	December 2019. This report and the expert	
		analysis by RJ Hall and G Horrell contain	
12d	Bob Hall Report Pinehaven flood 8	flood data superior to any data used by	
	Dec 2019_issued 27 July 2020, no	GWRC, MWH, SKM, Beca or Jacobs for the	
	change 3 Aug 2020_Figs. 1 2 & 3	Pinehaven flood model and flood maps and	
		should have been used to rectify and update	
		the model to produce more accurate and	
		reliable flood hazard maps for Pinehaven.	
12.			
12e	Graeme Horrell_Review of	Horrell, quote: "This [report by Robert Hall] is	
	Pinenaven Stream flood 8 December	a thorough reality check using 6 methods to	
	2019 at Chatsworth road gauge site	derive flood frequency curves and is	
	frequency estimates in the	food froquency studies for Dinobayon Stroom	
	acted ment by Report Holl	Jiood Jrequency studies for Pinenaven Stream	
		which were limited, and over-estimated jows	
		considerably. When compared WWH mean	
		interval of approximately 10 years	
		Eurthermore MWH's 10 year flood is revised	
		to be beyond the 100 year return interval	
		Conclusions:	
		The conclusions drawn from the analysis are	
		sound indicating clearly that provides flood	
		sound, malculing clearly that previous flood	

		frequency analysis prepared for GWRC [should] be abandoned along with the proposed stream upgrade It is unfortunate the flow recorder site installed in 2008 was removed, as 12 years of flow data would have been available today. Graeme Horrell 24 July 2020" If the flow recorder had not been removed then 15 years of flow data for Pinehaven Stream would have been available today (April 2023).	
13	2019-12-11_S Pattinson & A Ross_Whaitua Meeting 11-12- 19_FINAL clean	On 11 December 2019, just 3 days after the storm event, Alex Ross, Robert Hall (on speaker phone) and Stephen Pattinson presented information to the Whaitua Committee about the rainfall and flooding in Pinehaven and Silverstream on 8 December. We asked this GWRC Committee: "In conclusion we request that GWRC fix the Pinehaven baseline model and flood extent maps before we spend extra money unnecessarily on the proposed flood works and cause more habitat and property destruction through inflated baseline modelling." This information and the request to rectify the flood modelling were disregarded.	
14a	2020-12-02_Bob Hall Memo- Summary of Pinehaven Hydrology,	Incorrect baseline (pre-development on hills) hydrology renders hydraulic neutrality provisions of UHCC Plan Change 42 and for	

	Hydraulic Neutrality and Stream	determining stormwater management of	
	Channel Upgrade FINAL	future development on the Pinehaven hills	
		ineffective and unreliable:	
14b	2020-12-02 Bob Hall Figure 2	"Future hydraulic neutrality studies that must	
	revised - Flood Frequency Curves	accompany any future urban development in	
	······, ·····	this catchment cannot rely on GWRC and	
		UHCC current baseline hydroloay. The	
		hydrology must first be transparently	
		corrected by using infiltration rates that are	
		truly representative of the catchment, and by	
		ensuring proper account is had of the rainfall	
		interception effects of the catchment's heavy	
		vegetation cover." (p6)	
15	Pinehaven Stream Catchment - RJ	Curves showing stormwater runoff (flood	
	Hall Fig.2 - Flood Frequency Curves	flow) in the existing forested Pinehaven	
	(simplified)	catchment for different size storms.	
	(For detailed Fig. 2, see 14b above)	GWRC's curve (the grey curve) ludicrously	
		shows an 8.8m3/s flow (their estimate of the	
		peak flow on 23 July 2009) as being off the	
		chart (to the left) occurring about fortnightly	
		(see detailed Fig. 2 FFC in 14b above).	
		The actual peak flow on 23 July 2009 was	
		about 12.5m3/s, occurring about 1-in-40yrs.	
		The peak flow on 8 Dec 2019 was about	
		11.7m3/s, occurring about 1-in-25yrs. The	
		Pinehaven Streamworks should be designed	
		for the flooding that occurred on this day.	

Stephen Pattinson

14 April 2023