Attachment 5:

Geotechnical Assessment

ENGEO

ENGEO Limited

Plimmer Towers, Level 18, 2-6 Gilmer Terrace Wellington 6011, New Zealand PO Box 25 047, Wellington 6140, New Zealand T: +64 4 472 0820 www.engeo.co.nz

Project Number #19071.000.001

Geotechnical Investigation

Gabites Block, Upper Hutt

Submitted to: Maymorn Developments Ltd 5 Gibbons Street Upper Hutt 5143

Contents

1	Intro	Introduction		
2	Sco	Scope of Works6		
3	Site Description7			
4	Pre	vious Site Investigations	8	
5	Des	sktop Study	9	
	5.1	Regional Geology	9	
	5.2	Nearby Active Faults	. 10	
	5.3	Earthquake Hazard Mapping	. 10	
	5.4	Proposed District Plan Hazard Mapping	. 11	
	5.5	Historical Aerial Photographs	. 11	
	5.6	New Zealand Geotechnical Database	. 12	
6	Site	Investigation	. 12	
	6.1	Site Walkover Observations	. 12	
	6.2	Ground Investigation	. 15	
	e	6.2.1 Machine Boreholes	. 16	
	6	6.2.2 Cone Penetration Tests (CPT)	. 17	
7	Gro	und Model	. 17	
	7.1	Summary of Flat Area Subsurface Conditions	. 17	
	7.2	Summary of Hill Area Subsurface Conditions	. 19	
	7.3	Overall Geological Mapping and Cross Sections	. 19	
8	Geo	otechnical Assessment	. 20	
	8.1	Soil Classification	. 20	
	8.2	Seismic Design Considerations	. 20	
	8.3	Liquefaction Analysis	. 21	
	8.4	Lateral Spreading Analysis	. 22	
	8.5	Static Settlement	. 23	
	8.6	Landslide Potential	. 23	
	8.7	Rockfall Potential	. 24	
	8.8	Debris Flow Potential	. 24	
	8.9	Stream Bank Retrogression	. 24	
	8.10	Development Constraints Mapping	. 25	

9	Geotechnical Recommendations		
	9.1	Remediation of Uncontrolled Fill	27
	9.2	Earthworks	27
	9.3	Site Drainage	28
	9.4	Safety in Design	28
10	Sus	tainability	28
11	Lim	itations	29
12	Ref	erences	30

Tables

Table 1:	Calculated Peak Ground Acceleration – Flat Western Area
Table 2:	Summary of Liquefaction Analysis
Table 3:	Development Risk Classes

Figures

Figure 1:	Site Location Plan
Figure 2:	NZET Penetrometer and DP Test Locations
Figure 3:	Geological Mapping
Figure 4:	UHCC Proposed District Plan High Slope Hazard Mapping
Figure 5:	Site Photographs
Figure 6:	Location and Orientation of Site Photographs
Figure 7:	Subsurface Investigation Locations
Figure 8:	Subsurface Conditions across Flat Area of Site and Cross Section Lines

Appendices

- Appendix 1: NZET Ltd Consulting Engineers Subsurface Investigations
- Appendix 2: Historical Aerial Photographs
- Appendix 3: Historical Features Mapping from Historical Aerial Photographs
- Appendix 4: Geomorphological Map
- Appendix 5: Machine Borehole Logs
- Appendix 6: Cone Penetration Test Plots
- Appendix 7: Site Specific Geological Map
- Appendix 8: Geological Cross Sections
- Appendix 9: Site Subsoil Class Map
- Appendix 10: Liquefaction Analysis Results
- Appendix 11: Slope Hazard Map
- Appendix 12: Hazard Risk Class Map
- Appendix 13: Statement of Professional Opinion

ENGEO Document Control:

Report Title	eport Title Geotechnical Investigation - Gabites Block,				
Project No.	19071.000.001	Doc ID	02	02	
Client	Maymorn Developments Ltd	Client Contact	Jamie Gillie	Jamie Gillies	
Distribution (PDF)	Jamie Gillies				
Date	Revision Details/Status	Author	Reviewer	WP	
22/10/2021	Issued to Client for comment	LF	RJ	DF	
04/11/2021	Issued to Client	LF	RJ	DF	

Executive Summary

ENGEO Ltd was requested by Maymorn Developments Ltd to undertake a geotechnical investigation of the property referred to as Gabites Block, located to the east of Maymorn Road in Maymorn, Upper Hutt. The site has the legal description of Pt Sec 299 Hutt District and Lot 2 DP 356697. The purpose of our investigation was to assess the site's suitability for a rural residential plan change and subsequent subdivision, as indicated in the Gabites Block Development Area Structure Plan prepared by Envelope Engineering Ltd (Revision P3, dated 14 October 2021; project number 1594-01, drawing number PC-900).

Broadly the site morphology comprises relatively level ground across the western side, while the eastern side of the site is sloping hills, with a main ridgeline and associated side gully features.

To inform the geotechnical suitability of the proposed plan change and subsequent subdivision, we have undertaken a desktop study, site walkover, subsurface investigations and hazard assessment. Key geotechnical constraints to future development were identified as historical filling works, areas of historical and / or current slope instability and steeply sloping ground which has the potential for future instability.

Areas of fill (assumed to be non-engineered) were identified within an incised stream channel (up to approximately 6.5 m thick), old piggery effluent ponds (up to 3 m thick), and associated with the formation of a forestry road providing access to the hill areas of the site (unknown thickness but assumed to be greater than 1 m). We recommended at least partial remediation of the areas of uncontrolled fill to provide suitable building platforms.

A large scale slope instability was identified near the north-western extent of the hills while debris fans can be observed from the main gully channels on the western side of the hills extending towards the flat area of the site. In addition, bowed tree trunks suggest local instability in some areas of the sloping part of the site.

We have further considered the potential for liquefaction, lateral spreading, rock fall and debris flows and consider the risk from these hazards to be sufficiently low that specific mitigation works are not required in conjunction with the future subdivision works.

Our hazard assessment was then used to develop a constraints map, highlighting areas where future development will require varying levels of engineering input to form a suitable building platform. For the majority of the sites, we consider that a building platform can be readily developed which will be unlikely to accelerate or worsen the natural hazards affecting development. The exception to this is the areas identified in Appendix 4 as historical landslide or alluvial fans, which will require specific engineering design of stabilisation solutions in conjunction with subdivision works.

From a geotechnical perspective, we consider that the site is broadly appropriate for the proposed plan change, subject to the adoption of our recommendations around remediation of uncontrolled fill, earthworks and drainage.

1 Introduction

ENGEO Ltd was requested by Maymorn Developments Ltd to undertake a geotechnical investigation of the property referred to as Gabites Block, located to the east of Maymorn Road in Maymorn, Upper Hutt (herein referred to as 'the site'). The site has the legal description of Pt Sec 299 Hutt District and Lot 2 DP 356697 (Upper Hutt City Council, Xplorer (Public), Property Boundaries & Labels; retrieved October 2021). This work has been carried out in accordance with our signed agreement dated 9 July 2021 (ref P2021.001.495_03). We have been provided with the Gabites Block Development Area Structure Plan prepared by Envelope Engineering Ltd (Revision P3, dated 14 October 2021; project number 1594-01, drawing number PC-900).

The purpose of this geotechnical assessment is to assess the site's suitability for a rural residential plan change and subsequent subdivision, as indicated in the Gabites Block Development Area Structure Plan. Scope of Works

Our scope of works comprised:

- Undertaking a review of the available geotechnical and geological information relevant to the site.
- Site assessment of the hillside area including detailed geomorphological mapping and slope zoning based on steepness.
- Coordination with a local buried services location contractor.
- Coordination of a drilling contractor to complete 10 machine holes across the flat areas proposed for residential development.
- Coordination of a contractor to complete 10 Cone Penetration Tests (CPT) to a depth of 15 m also across the flat area proposed for residential development.
- An assessment of the liquefaction potential.
- Generate a conceptual geological ground model and geotechnical constraints map.
- An assessment of geotechnical risks that may affect the development.
- Production of this geotechnical report based on the findings of our enquiries, ground investigation and analyses, including recommendations for earthworks, cut and fill batter design and suitability of the final ground levels to support residential buildings. This report considers the geotechnical requirements of Section 106 of the Resource Management Act (RMA) and includes a statement of professional opinion in regard to the proposed site development.

2 Site Description

The proposed development site is located within Maymorn, Upper Hutt and covers an area of 74 ha (Upper Hutt City Council, Xplorer (Public), Property Boundaries & Labels; retrieved October 2021). It is bound by Maymorn Road to the west, the Wairarapa Rail Line and Rimutaka Tunnel to the south, forestry land to the east and residential properties to the north. A site location plan is presented in Figure 1.

Figure 1: Site Location Plan

Site location plan created using datanest, with aerial photograph from Land Information New Zealand (photography date not specified).

Broadly the western side of the site comprises relatively level ground, while the eastern side of the site is sloping, with a main ridgeline and associated side gully features.

The flat area on the western side of the site is largely grassed and used for cattle grazing, with a series of drainage channels which typically drain towards the north. The channels range from a steep sided natural meandering river in the north-western portion of the site, to modified linear drainage features which flow into the natural river channel and smaller drainage channels diverting water from the hills. A small pond feature is located near the southern corner of the site.

A shed is located adjacent to the pond near the southern corner of the site.

The sloping area is currently vegetated, predominantly with pine forest, and has been extensively modified by forestry works over time, including formation of a network of access tracks. Broadly the main ridgeline trends southeast to northwest but splays near the centre of the hill area with one part of the ridge extending to the northwest and the other extending to the northeast. Generally the ridgeline has a wide and relatively level crest. The adjacent slope angles typically up to 35°, with isolated gullies where slope angles locally reach approximately 50°. Further forestry tracks extend across the side slopes off the main ridgeline, with localised sub-vertical cuts associated with track formation. A drainage channel with flowing water was observed between the main ridge where it splays to the northwest and northeast.

3 **Previous Site Investigations**

NZET Ltd Consulting Engineers (NZET) previously completed a geotechnical investigation report for the western level portion of the site (dated 28 February 2021, no reference provided) with the purpose of assessing subdivision potential. Their reporting outlines the findings of a desktop study, subsurface investigations and provides recommendations for further testing.

Findings of note within their reporting included the identification of significant surface modifications to the flat area of the site, which included:

- Pond decommissioning associated with a previous piggery on-site; and
- Diversion of the main stream gully and backfilling.

The following subsurface investigations were completed by NZET:

- 24 Scala tests were undertaken across the southern flat area of the site (completed in conjunction with the 2021 reporting).
- 20 Dynamic Penetration Heavy (DPH) tests were undertaken across the wider flat area of the site (completed in 2021).
- 24 test pit excavations across the southern flat area of the site (completed in 2013).

Raw Scala and DPH test results were not provided within the NZET reporting, however interpreted bearing capacity from each test is presented. Test results were grouped to reflect the different ground conditions across the flat area of the site, as shown in Figure 2, and summarised as follows:

- The flat area with the stream channel that was historically filled (NZET green tests).
- An area of un-modified original ground to the northwest (NZET blue tests).
- Backfilled ponds associated with the piggery (NZET purple tests).
- The area near the rail tunnel portal (NZET yellow tests).

Extracts of the NZET test location plan and interpreted results are presented in Appendix 1.

Figure 2: NZET Penetrometer and DP Test Locations

Extract from NZET 28 February 2121 report.

The NZET test pit investigations are reported to extend to depths of 1 to 1.5 m below ground level. No soil logs are provided within their reporting, however photographs of the test pits were included. These are presented in Appendix 1, along with the test pit location plan.

Overall NZET considered that the site appears generally suited to the proposed development, subject to further additional geotechnical investigation.

4 Desktop Study

4.1 Regional Geology

The site is mapped by GNS (Begg and Johnston, 2000) as being underlain by two geological units (Figure 3). The level western side of the site is underlain by alluvial gravel, described as late Pleistocene poorly to moderately sorted gravel with minor sand or silt. The hill area to the eastern side of the site is underlain by Rakaia Terrane. Commonly termed "Greywacke" the Rakaia Terrane comprises a sequence of grey sandstone-mudstone sequences and poorly bedded sandstone. Overlying the Greywacke typically is a sequence of sand silt and gravel Soil (Colluvium) which may reach several metres in thickness. To the northwest of the site is a younger (Holocene) alluvial gravel deposit.

Figure 3: Geological Mapping

Extract from Greater Wellington Regional Council GIS Maps.

4.2 Nearby Active Faults

The GNS Science New Zealand Active Faults Database website indicates that the site is located within 20 km of several active faults. Of the active faults within 20 km, only two are listed amongst the major faults in Table 3.6 of NZS1170.5, as follows:

- Wellington Fault approximately 2 km from the site.
- Wairarapa Fault- approximately 11 km from the site.

Near fault factors, as per NZS1170.5, may therefore need to be taken into account during detailed design.

4.3 Earthquake Hazard Mapping

The Greater Wellington Regional Council presents a series of earthquake induced hazard maps (accessed through the GWRC Web Map Viewer), which indicates the following hazards at the site. These are summarised as follows for the subject site:

- Slope failure: low to moderate hazard across the hills increasing to a moderate to high hazard for the banks of the meandering stream channel.
- Liquefaction hazard: no hazard is identified.
- Ground shaking and combined hazard: the site is located beyond the mapped areas.

4.4 Proposed District Plan Hazard Mapping

Upper Hutt City Council are in the process of updating the district plan, to address the risk from natural hazards. Plan Change 47 includes a map of areas subject to high slope hazards. Figure 4 shows an excerpt from this mapping, which indicates that the majority of the hill areas of the site (including the banks of the stream channel) are considered to be within the high slope hazard area. Within these hazard areas, Upper Hutt City Council note that "new building platforms in this area have the potential to impact the stability of the hillside". Plan Change 47 indicates that specific geotechnical assessment and design will be required in conjunction with development of these areas.

Figure 4: UHCC Proposed District Plan High Slope Hazard Mapping

Excerpt from

https://uhcc.maps.arcgis.com/apps/View/index.html?appid=0c4cc22a72504f93bae6626578945df8&extent=174.8969,-41.1890,175.2876,-41.0439, retrieved October 2021.

4.5 Historical Aerial Photographs

We have reviewed a range of aerial photographs of the site dating back to 1951 available through RetroLens and Google Earth imagery dating from 2002 to 2020. Excerpts of these photos covering the site area are presented in Appendix 2, and annotated to show key landform features and changes over time. In summary:

• Extensive logging works have been completed across the hills over the time of the aerial photographs. The site is of a large enough area that the hills have not been entirely clear at any one point in time, as a result of staggered clearance and replanting. Most of the hills were cleared for planting at the time of the 1977 aerial photograph, and again in 2003. Numerous access tracks and work platforms were formed in conjunction with these woks.

- No obvious evidence of large-scale hillslope instability is present in the aerial photographs. However, there is a possibility of smaller scale failures which would likely have been obscured by the vegetation cover and / or logging works across the hills.
- In the early photographs, the flat area of the site was cut by a large meandering stream channel which extended broadly parallel to the western site boundary, with smaller meandering channels to the east of the main stream. The smaller channels were progressively filled as the site was converted to pasture (by the time of the 1969 aerial photograph).
- Four ponds were formed between the time of the 1974 and 1977 aerial photographs, and we interpret these to be the effluent ponds discussed within the NZET report (Section 4). Both the effluent ponds and large meandering stream were infilled between the time of the 2003 and 2008 aerial photographs.
- The only structures evident on-site from the available aerial photographs have been clustered around the southern corner of the site. The initial structures at the southern corner of the site had a small floor area, which were then replaced with larger sheds that we anticipate were related to the piggery.

A summary map presenting historical features (specifically earthworks, developments and prior waterways) is presented in Appendix 3.

4.6 New Zealand Geotechnical Database

A review of the New Zealand Geotechnical Database indicates that the nearest subsurface investigation data is located approximately 1.7 km to the southwest. Owing to the potential for subsurface variability, we do not consider this to be representative of the site and have therefore not considered it further.

5 Site Investigation

5.1 Site Walkover Observations

ENGEO undertook a site walkover assessment on 11 August 2021, with observations used to inform the geomorphological map of the site conditions which is presented in Appendix 4. In summary, the following observations were made:

- The south-western side of the site is broadly flat ground that is grassed and used for cattle grazing (Figure 5 Photo 1). A number of small drainage channels flow across this area, with a larger stream flowing in a linear south to north orientation from the pond at the south-western corner of the site through the middle of the paddocks (Figure 5 Photo 2).
- Standing water and poor drainage with the growth of rushes was observed across much of the flat areas. Generally drier ground conditions were encountered to the west and north, moving away from the base of the hills.
- The flat area of the site is cut by two meandering stream channels which join to a single channel at the base of the hills. The banks of the western-most channel are vegetated (Figure 5 Photo 3), while the banks of the eastern-most channel appear to have recently been cleared of vegetation. Both streams transition gradually from the broadly flat paddocks adjacently to a sub-vertical slope with the base of the channels incised approximately 5 m to 10 m below adjacent ground level (Figure 5 Photo 4).

- The hillslopes on the eastern side of the site have a series of steeply sloping gullies and ridge features that have been extensively modified by forestry works.
 - Evidence of local instability is present in some areas as indicated by the bowing shape of isolated tree trunks (Figure 5 – Photo 5).
 - An area of recent instability was observed at the base of the hills (Figure 5 Photo 6). The toe of the slope appears to have been previously cut and over-steepened. The cutslope has recently failed with a headscarp located approximately 8 m above the adjacent paddocks, measuring approximately 4 m wide. The debris lobe at the toe of the slope extended approximately 12 m wide.
 - No further recent instability was observed across the accessible portions of the hill areas.
 - Variable rock and colluvium was observed to be outcropping across the slope areas, with colluvium thicknesses of up to 3 m within the forestry road cuts. We anticipate that colluvium thicknesses are likely to be greater near the base of the gullies.
 - At the highest area of the site is a cut platform (assumed to have been formed in conjunction with previous forestry works). Standing water was observed in localised areas across this platform, with a small pond present to the northwest of the platform. We understand from discussions with the client that this feature is sometimes completely dry.

Site photographs are presented in Figure 5, with the locations where they were taken and their orientation presented in Figure 6. We note that due to dense vegetation cover (specifically gorse and blackberry) our sloping ground observations were largely limited to that of the recently cleared ground and forestry tracks.

Figure 5: Site Photographs

Photo 1: Broadly flat paddocks across the western side of the site used for cattle grazing. Photograph taken facing northwest.

Photo 3: Western branch of the meandering river channel.

Photo 5: Local instability indicated by bowed tree trunks.

Photo 2: Drainage feature on western side of site. Photograph taken facing south.

Photo 4: Eastern branch of the meandering river channel.

Photo 6: Recent instability on a previously cut slope at the toe of the hills.

04.11.2021 19071.000.001_02

Figure 6: Location and Orientation of Site Photographs

Site plan created using datanest, with aerial photograph from Land Information New Zealand (photography date not specified).

5.2 Ground Investigation

ENGEO engaged Griffiths Drilling Ltd to undertake ten machine boreholes and seven CPT's across the flat area of the site, at the locations indicated in Figure 7. Further details of each of these investigations are presented in the following sections.

We understand that the MBIE / NZGS Guidance Module 2 Table 2.1 indicates that rural land is to have one deep investigation location per Lot, however, the density of the testing is considered to be adequate to characterise the subsurface conditions for the purposes of identifying the main hazards and constraints which could affect the proposed future residential development. Further subsurface investigations will be required to inform detailed design and building consent works on a lot by lot basis.

Figure 7: Subsurface Investigation Locations

Site plan created using datanest, with aerial photograph from Land Information New Zealand (photography date not specified).

5.2.1 Machine Boreholes

The machine boreholes were completed between 3 and 10 September 2021, and comprised a combination of continuous sonic core with Standard Penetration Tests (SPT) at 1.5 m intervals.

All of the machine boreholes extended to at least 19.5 m where a SPT was completed before the investigation was terminated. Not all of the SPTs extended for their full run length due to refusal in dense ground. The final SPTs at BH01, BH06, BH08, BH09 and BH10 were terminated in very dense gravel, while the remaining SPTs were all extended their full run length to terminate at 19.95 m depth.

Bedrock was not encountered in any of the investigations.

Groundwater dip tests were not completed in conjunction with these investigations However, we observed standing water at the ground surface across the flat area of the site near the base of the hills; and flowing water in the base of the drainage and stream channels. Accordingly, we anticipate that the depth to groundwater will be shallower near the base of the hills and then deepen towards the base of the stream channels (which extend to a maximum of 12 m deep near the northern side of the site).

Borehole logs are presented within Appendix 5 and are written in general accordance with the New Zealand Geotechnical Society field classification guidelines (NZGS, 2005).

5.2.2 Cone Penetration Tests (CPT)

Seven CPTs were completed at the site with all extending to refusal on material with high tip resistance. Termination depths ranged from 1.8 m to 10.49 m below ground level, reflecting variable ground conditions at the site. Plots of the CPT data are presented in Appendix 6.

Test locations were somewhat restricted by the presence of wet and very soft ground across the eastern side of the flat area of the site, in which the CPT rig was unable to traverse or gain sufficient anchoring for testing.

6 Ground Model

6.1 Summary of Flat Area Subsurface Conditions

Ground conditions across the flat area of the site are variable, however can be broadly be characterised into four distinct areas:

- North-western side of site: underlain by shallow dense gravels
- Infilled stream channel: underlain by variable fill deposits to approximately 6.5 m depth
- Zone of soft material (encountered to 3 m depth) in close proximity to historical effluent ponds
- Remainder of flat area site: underlain by interbedded silts and gravels of varying density

These areas are illustrated in Figure 8 below.

Figure 8: Subsurface Conditions across Flat Area of Site and Cross Section Lines

Site plan created using datanest, with aerial photograph from Land Information New Zealand (photography date not specified).

Only CPT investigations were completed within the location of the historical effluent ponds. The material behaviour type indicates clay and silty clay interbedded with layers of organic soil to at least 3 m below ground level, which is very soft. It is unclear from the material behaviour type and strength profile if this material is reflective of effluent pond infill, and if so, where the transition between backfill and natural soils occurs. Further investigation within this area will be required in conjunction with any future subdivision earthworks.

The above mapping provides a generalised summary of the subsurface conditions across the flat areas of the site. However, the ground profile comprises interbedded layers of material with varying silt, sand and gravel content that varies considerably between investigation locations. Included within Appendix 6 (final page) is a summary plot, with data from each of the individual test locations presented in a single plot for cone resistance, friction ratio, pore pressure ratio and soil behaviour type. This shows significant variation in the subsurface conditions encountered in the CPT locations, which is similar to the variability noted in the boreholes.

6.2 Summary of Hill Area Subsurface Conditions

While no subsurface investigations were undertaken across the hill areas of the site, there were numerous road cuttings and outcrops (from previous pine forestry operations) observed in conjunction with our site walkover that provided an indication to the subsurface conditions. For the purposes of characterising the hill area subsurface conditions, we have mapped six areas:

- Rock outcrops (sandstone).
- Rock inferred to be less than 3 m below ground surface (shallow sandstone).
- Colluvium soil cover (inferred depth to rock of more than 3 m below ground level).
- Alluvium soil cover (inferred depth to rock of more than 3 m below ground level).
- Fill material (inferred more than 1 m in thickness).
- Landslide debris (both recent and historical).

In summary, rock was generally observed to be outcropping in some locations along the ridgelines. Covering the rock is a layer of colluvium, which is expected to be thinnest (less than 0.5 m typically) along and in close proximity to the ridge crests The colluvium thickness is expected to generally increase to several metres towards the base of the slopes, however there will be some variation where forestry works have formed tracks and modified the slopes.

Based on the geomorphology of the site, alluvium is expected to infill the lower gully features where soils have been washed over time to form debris fans. These were predominantly observed to the west of the main ridgeline, however a smaller alluvial fan was observed between the northwest and northeastern splays of the main ridgeline.

There is geomorphological evidence of a large landslide towards the north-western side of the site, as evidenced by hummocky terrain and the general surface morphology, however this does not appear to have experienced movement over the time frame of the available historical aerial imagery. A small recent landslide was observed at the toe of an alluvial fan, which had been previously cut forming an over-steepened slope that had partially collapsed.

Fill was noted in conjunction with the main forestry road that provides access up to the ridgeline. We anticipate this to be greater than 1 m thick based on the morphology of the access track and adjacent landform, however have not undertaken any subsurface investigation within this area to further assess this assumption.

6.3 Overall Geological Mapping and Cross Sections

A summary of our inferred ground conditions for the site (both flat and hill areas) is presented on the map provided in Appendix 7. To further illustrate the generalised subsurface conditions at the site, a series of schematic geotechnical cross section lines are presented in Appendix 8. The locations of the lines are indicated in Figure 8.

The interpreted cross sections present broad trends in the subsurface conditions, however we note that the ground conditions comprise relatively thinly interbedded layers of variable silts, sands and gravels. For specific ground conditions at each test location, we recommend referring to the individual boring logs and CPT plots.

7 Geotechnical Assessment

7.1 Soil Classification

Based on our interpretation of the ground conditions at the site, we consider that the site may be divided into three seismic soil classes in accordance with NZS 1170.5:2004 at the site, as follows:

- Class B Rock (assumes up to 3 m coverage of soil or completely to highly weathered rock).
- Class C Shallow Soil.
- Class D Deep Soil.

These areas are presented in Appendix 9, and are based on the results of our subsurface investigations and site observations.

The hill site subsoil classes should be further refined by lot specific investigations to support foundation design and building consent works. Earthworks associated with subdivision formation on the hill sites are likely to include cut and fill works on each lot, and may therefore alter the site subsoil class from the current conditions.

It is possible that the flat areas of the site may be Class C – Shallow Soils, however as published site class maps are not available for this area and rock was not encountered within our subsurface investigations, we have conservatively adopted site Class D for this area. If the site class is critical to future development, further investigation and analysis should be undertaken to find the depth to rock and calculate the site period; however there is a distinct possibility with further works that the site class does not change and is confirmed as D - Deep Soils.

7.2 Seismic Design Considerations

For the purposes of characterising seismic design, we have assumed that any future subdivision will be developed with Importance Level 2 (IL2) structures only. Further analysis will be required if the development is to incorporate structures of higher importance levels.

According to NZS 1170.0:2002, Importance Level 2 (IL2) buildings should sustain little or no structural damage under a Serviceability Limit State (SLS) design load case, which is based on earthquake shaking with a 25 year return period. Further, IL2 buildings are required to be designed to resist earthquake shaking with an annual probability of exceedance of 1/500 (i.e. a 500 year return period). This is the Ultimate Limit State (ULS) design seismic loading.

For the assessment of liquefaction induced settlements, we have calculated the peak horizontal ground accelerations (a_{max}) for the flat area of the site (as the hill areas are not subject to liquefaction hazards). This was calculated in accordance with the Ministry of Business Innovation and Employment (MBIE) / NZGS Module 1 (2016) and the Bridge Manual 2018 updates, using the following formula:

$$a_{max} = C_{0,1000} R f / 1.3$$

where:

- $C_{0,1000} = 0.45$ for Upper Hutt assuming Class D soil as assumed across the entirety of the flat area of the site (Table C6.1 of the Bridge Manual Commentary 2018)
- R = 0.25 for a 25 year return period event (in accordance with NZS 1170.5)

- = 1.0 for a 500 year return period event (in accordance with NZS 1170.5)
- F = 1.0 for Class D Soils

Accordingly, Table 1 presents the calculated peak ground acceleration for the design cases, along with the corresponding effective magnitude recommended within Table C6.1 of the Bridge Manual Commentary.

Table 1:	Calculated Peak Ground Acceleration – Flat Western Area	

Design Case	Moment Magnitude (Mw)	Acceleration (amax)
SLS	6.25	0.09
ULS	7.1	0.35

7.3 Liquefaction Analysis

The New Zealand Geotechnical Society (NZGS) and Ministry of Business, Innovation and Employment (MBIE) Geotechnical Guidance Module 3 (2016) provides recommendations for the assessment of liquefaction. This has been considered in our discussion below.

We have analysed the liquefaction potential of the flat area of the site utilising the CPT data. While the SPT data obtained from the machine boreholes can be for the purposes of liquefaction analysis, this is reliant on data points collected at 1.5 m centres. Accordingly, small changes in the subsurface profile can be missed and the analysis may over or under predict settlements. We have therefore chosen to only analyse the data from the CPTs for the purposes of characterising the liquefaction potential.

The following methods and parameters were utilised for the analysis:

- Liquefaction triggering method: Boulanger and Idriss (2014) as recommended by MBIE / NZGS.
- Two ground motions:
 - o SLS Case: Mw 6.25, 0.09 g
 - o ULS Case: Mw 7.1, 0.35 g
- A threshold probability of liquefaction (P_L) of 15%.
- Estimated fines content based on CPT data methods outlined by Robertson and Wride (1998).
- A soil behaviour type index (I_c) cut-off value of 2.6 to differentiate between susceptible and nonsusceptible to liquefaction soils for the CPT analysis.
- The Zhang, Robertson, and Brachman (2002) procedure for estimating volumetric strain and vertical settlement for the CPT analysis.
- The Boulanger and Idriss relationship between fines content and I_c with a fitting parameter (C_{FC}) of 0.0 for the CPT analysis.

• Conservatively we have assumed earthquake groundwater levels at the surface, based on our observations of standing water across large areas of the site.

Full analysis results are presented in Appendix 10 and are summarised in Table 2.

CPT Identifier	Calculated Vertical Settlements (mm) ¹		
(Investigation depth)	SLS	ULS	
CPT01 (7.16 m)	< 10	50	
CPT02 (7.78 m)	10	50	
CPT03 (6.46 m)	Negligible	20	
CPT04 (10.49 m)	Negligible	80	
CPT05 (7.19 m)	10	80	
CPT06 (1.8 m)	Negligible	Negligible	
CPT07 (10.17 m)	10	80	

 Table 2:
 Summary of Liquefaction Analysis

¹ Vertical free field settlements only. Settlements beneath buildings may be greater.

The analysis suggests very low levels of liquefaction induced settlements under SLS ground shaking conditions, with settlements due to thin lenses of potentially liquefiable material interspersed throughout the investigated soil profile (from near the ground surface through to 9.5 m depth). Under ULS ground shaking conditions, higher settlements of up to 80 mm are indicated by the analysis, with liquefiable layers up to 2 m thick.

7.4 Lateral Spreading Analysis

Lateral spreading occurs when there are continuous and uniform liquefiable layers that are able to move towards a 'free face'.

No lateral spreading is anticipated under SLS ground shaking conditions due to the lack of continuous liquefiable layers of sufficient thickness in which to induce movement.

While more of the ground profile is potentially liquefiable under ULS ground shaking conditions, the ground conditions remain highly variable with no obvious evidence of continuous and uniform liquefiable layer in which to trigger spreading. Accordingly, we consider that the potential for lateral stretch across the future building platforms at the site is low.

7.5 Static Settlement

We consider that some of the flat areas of the site may be subject to static settlements under loads associated with further fill placement or the proposed residential developments. We anticipate that this may occur due to consolidation of historical fills within the old stream channel and soft soils within the vicinity of the historical effluent ponds. The observed fill material within the old stream channel was generally very soft to firm and loose to medium dense and contained variable detritus (such as glass, metal, wood). These factors suggest that the placed material was not cleanfill and was not placed to engineering standards (NZS4431). As such we cannot rule out the potential for future static settlement from consolidation of the fill material. Development works should therefore allow for solutions to mitigate or tolerate future static settlements should subdivision fill be required in these areas.

Prior to development of lots within the vicinity of the old effluent ponds, we recommend the completion of lot specific testing and consolidation to assess the likely settlements resulting from the soft soils within the upper 3 m.

7.6 Landslide Potential

From our site observations and knowledge of the failure mechanisms of the encountered subsurface materials, we consider that the most likely form of landsliding will be shallow sliding of the surface soils on the underlying rock surface. Owing to the relatively low nature of the hills and reasonably shallow expected depths to rock, we consider that these will typically be of a localised and shallow nature; however there is geomorphological evidence of at least one large scale failure near the north-western extent of the site as shown within Appendix 4. This landslide affects a part of the Hillside Area of the Structure Plan. The landslide does not appear to show any evidence of movement during the time frame of the available aerial photographs, but will need to be considered in greater detail in conjunction with the development of specific lots in this area.

As a preliminary step in the characterisation of landslide potential, we have utilised Greater Wellington Regional Council LiDAR data to group the sloping site into areas of similar gradient. For the purposes of this analysis we have adopted the following slope gradient categories:

- Instability unlikely where slope angles are less than 10°
- Instability unlikely where slope angles are between 10° and 17.5°
- Instability possible where slope angles are between 17.5° and 25°
- Instability unlikely under earthquake or rainfall events where slope angles are between 25° and 32.5°
- Instability likely where slope angles are between 32.5° and 37.5°
- Instability expected where slope angles are greater than 37.5°

Our resulting slope hazard mapping (based only from the slope angle data) is presented in Appendix 11. The resultant hazard mapping is limited by resolution of the LiDAR contour data that was used as an input for Constraint mapping and this should not be considered as the final slope hazard characterisation.

7.7 Rockfall Potential

As the rock exposures on-site were limited to that within formed accessways (forestry tracks and cuts) and at the base of stream channels, we consider the potential for rockfall at the site to be low. Further, the exposed rock comprised highly to completely weathered Greywacke sandstone which is highly fractured and more susceptible to localised frittering rather than large rock release which is required for significant rockfall.

7.8 Debris Flow Potential

The historical alluvial fans indicate potential for future debris flow which may affect the areas shown in Appendix 4 that should be considered on a lot specific basis when developing these.

We have considered the potential for future debris flow resulting from extreme rainfall events, considering morphometrical evidence. Initiation of debris movement and style of flow has been assessed by considering the Melton ratio (R). Broadly, catchment systems with high values of R and shorter stream lengths are mostly prone to debris flows, while those with lower values of R and longer stream lengths are mostly prone to floods (debris or clear water). R is defined as:

$$R = \frac{H_b}{\sqrt{A_b}}$$

Where H_b is the basin relief (the highest elevation in the catchment less the lowest elevation) and

 A_b is the catchment area in plan.

Our assessed R for the three largest gully features with associated debris fans (suggesting past debris flows and potential for future debris flows), range between 0.3 and 0.4. As indicated in Welsh and Davies (2011), values of R greater than 0.5 typically indicated catchments showing signs of debris flow occurrence. As the calculated values are both less than 0.5, this suggests that the style of flow resulting from these catchments is likely to be a debris flood, which is defined as a very rapid flow of water, heavily charged with debris in a steep channel.

7.9 Stream Bank Retrogression

In addition to the potential for landsliding across the hill areas of the site, there is potential that the stream banks (where not filled) that cut across the flat area of the site may regress with time. To inform future development works, we recommend the use of a development set-back equal to a distance two times the height of the stream bank. This does not preclude development closer to the stream bank, however specific engineering assessment and design will be required to inform works.

As a preliminary indication, from our review of the contour data available through Land Information New Zealand (LINZ) stream bank heights vary from 3 m in the southeast to 12 m in the north. Accordingly, the corresponding development set-backs would range between 6 m and 24 m. For the purposes of defining the crest of the stream bank where there isn't an obvious slope break, we recommend that this is taken as the point at where the slope gradient exceeds 30°.

7.10 Development Constraints Mapping

To provide guidance for future development, we have prepared a constraints map outlining potential risk to the proposed subdivision by combining our knowledge of past and present site conditions to guide future works. The constraints map considers interactions between the following:

- Site geology (subsurface conditions, identified through our site observations and subsurface investigations).
- Geomorphological conditions (the locations of landslides and other features identified through our site observations and aerial photograph reviews).
- Topographical conditions (utilising Greater Wellington Regional Council LiDAR data to characterise areas of similar slope gradients).

Combining these factors we have developed the risk classes presented in Table 3. We have been advised that the proposed subdivision will be entirely of low density and rural residential development, and our assessment of risk has taken this into consideration when assessing vulnerability.

Development Risk ClassFlat Site CharacteristicsHill Slope CharacteristicsLimitations to Development1Areas of natural ground Little to no liquefaction induced settlementsLow slope gradients (less than 17.5°) No obvious evidence of instabilityLittle to no limitations to residential development (subject to foundation suitability)2Areas of minor filling (up to 1 m thick)Areas of moderate slope gradient (17.5° to 25°) Areas of moior filling (up to 1 m thick) May be evidence of instability neav rainfall or large estimate events No obvious evidence of instabilityMay require shallow earthworks to form a suitable building platform3Areas of moderate filling (up to 3 m thick)Moderate to steep slope gradients (25° to 32.5°)Will likely require specific engineering design to form a suitability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Some evidence of small scale instabilityWill likely require specific engineering design and suitabile building platform4Areas of moderate to major filling (up to 8 m tick)Steep slope gradients (32.5° to 37.5°) or some evidence of small scale instability or inundation from upslope) or suitabile building platformWill require specific engineering design and suitabile building platform5Areas where liquefaction induced settlements over 50 mm under SLS conditionsSteep slope gradients (32.5° to 37.5°) or suitability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Evidence of large-scale inactive or relidi slope instabilityComplex or large-sc				
1Areas of natural ground Little to no liquefaction induced settlementsLow slope gradients (less than 17.5°) No obvious evidence of instabilityLittle to no limitations to residential development (subject to foundation suitability)2Areas of minor filling (up to 1 m thick) Liquefaction induced settlements of up to 25 mm under SLS conditionsAreas of moderate slope gradient (17.5° to 25°) Areas of minor filling (up to 1 m thick) May be evidence of instability No obvious evidence of instabilityMay require shallow earthworks to form a suitable building platform3Areas of moderate filling (up to 3 m thick) Liquefaction induced settlements over 50 mm under SLS conditions.Moderate to step slope gradients (25° to 32.5°) Instability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Some evidence of small scale instabilityWill likely require specific engineering design to form a suitable building platform4Areas of moderate to major filling (up to 8 m thick)Steep slope gradients (32.5° to 37.5°) Instability is likely under earthquake or rainfall events (includes potential for includes potential for inudation form upslope) or suitable building platformWill require specific engineering design and suitable building platform4Areas of moderate to major filling (up to 8 m thick)Steep slope gradients (grader than or rainfall events (includes potential for inudation form upslope) or rainfall events (includes potential for induced settlements are likely to be over 100 mm under SLS conditionsSteep slope gradients (greater than 37.5° from horizontal) and indications of r	Development Risk Class	Flat Site Characteristics	Hill Slope Characteristics	Limitations to Development
2 Areas of minor filling (up to 1 m thick) Areas of moderate slope gradient (17.5° to 25°) May require shallow earthworks to form a suitable building platform 3 Areas of moderate filling (up to 3 m thick) Moderate to steep slope gradients (25° to 32.5°) Will likely require specific to 32.5°) 3 Areas of moderate filling (up to 3 m thick) Moderate to steep slope gradients (25° instability is likely under earthquake events Will likely require specific to 32.5°) 4 Areas of moderate to settlements over 50 mm under SLS conditions. Steep slope gradients (32.5° to 37.5°) instability is likely under earthquake or inundation from upslope) or Some evidence of small scale instability Will require specific engineering design and substantial foundations and / or earthworks to form a suitable building platform 4 Areas of moderate to major filling (up to 8 m thick) Steep slope gradients (32.5° to 37.5°) Instability is likely under earthquake or inundation from upslope) or Will require specific engineering design and substantial foundations and / or earthworks to form a suitable building platform 5 Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditions Steep slope gradients (greater than induced settlements are likely to be over 100 mm under SLS conditions Complex or large-scale engineering works required building platform 5 Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditions Steep slope gradients (greater than induced se	1	Areas of natural ground Little to no liquefaction induced settlements	Low slope gradients (less than 17.5°) No obvious evidence of instability	Little to no limitations to residential development (subject to foundation suitability)
3Areas of moderate filling (up to 3 m thick) Liquefaction induced settlements over 50 mm under SLS conditions.Moderate to steep slope gradients (25° to 32.5°) Instability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Some evidence of small scale instabilityWill likely require specific engineering design to form a suitable building platform4Areas of moderate to major filling (up to 8 m thick) Liquefaction induced settlements over 50 mm under SLS conditions.Steep slope gradients (32.5° to 37.5°) Instability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or listability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Evidence of large-scale inactive or relict slope instabilityWill require specific engineering design and substantial foundations and / or earthworks to form a suitable building platform5Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditionsSteep slope gradients (greater than 37.5° from horizontal) and indications of recent instabilityComplex or large-scale engineering works required to develop. Consideration should be given to avoiding these other areas owing to severe physical limitations these other areas owing to severe physical limitations that are likely to be difficult to overcome	2	Areas of minor filling (up to 1 m thick) Liquefaction induced settlements of up to 25 mm under SLS conditions	Areas of moderate slope gradient (17.5° to 25°) Areas of minor filling (up to 1 m thick) May be evidence of instability following heavy rainfall or large earthquake events No obvious evidence of instability	May require shallow earthworks to form a suitable building platform
4Areas of moderate to major filling (up to 8 m thick)Steep slope gradients (32.5° to 37.5°)Will require specific engineering design and substantial foundations and / or earthworks to form a suitable building platform5Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditionsSteep slope gradients (greater than 37.5° from horizontal) and indications of recent instabilityComplex or large-scale engineering works required to develop. Consideration should be given to avoiding these other areas owing to severe physical limitations that are likely to be difficult to overcome	3	Areas of moderate filling (up to 3 m thick) Liquefaction induced settlements over 50 mm under SLS conditions.	Moderate to steep slope gradients (25° to 32.5°) Instability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Some evidence of small scale instability	Will likely require specific engineering design to form a suitable building platform
5 Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditions or Evidence of large-scale, active slope instability to be difficult to overcome cover over the stability of the settlement of the settlement of the settlement over the	4	Areas of moderate to major filling (up to 8 m thick) Liquefaction induced settlements over 50 mm under SLS conditions.	Steep slope gradients (32.5° to 37.5°) Instability is likely under earthquake or rainfall events (includes potential for inundation from upslope) or Evidence of large-scale inactive or relict slope instability	Will require specific engineering design and substantial foundations and / or earthworks to form a suitable building platform
	5	Areas where liquefaction induced settlements are likely to be over 100 mm under SLS conditions	Steep slope gradients (greater than 37.5° from horizontal) and indications of recent instability or Evidence of large-scale, active slope instability	Complex or large-scale engineering works required to develop. Consideration should be given to avoiding these other areas owing to severe physical limitations that are likely to be difficult to overcome

Table 3: Development Risk Classes

Note that these are based on the current site topography and assume only minimal earthworks to develop the site into residential lots. Should extensive earthworks be proposed (such as valley in-fills), the risk areas would need to be reassessed.

A site map presenting our interpreted development classes is presented in Appendix 12.

In some areas the map within Appendix 12 indicates higher development risk classes immediately adjacent to a lower risk category. In this instance, we recommend that that the lot specific geotechnical investigation takes into consideration risk posed by the adjacent area to appropriate mitigation solutions are incorporated into the development works.

8 Geotechnical Recommendations

We consider that the site is broadly appropriate for the proposed plan change as outlined in the Gabites Block Development Area Structure Plan prepared by Envelope Engineering Ltd (Revision P3, dated 14 October 2021; project number 1594-01, drawing number PC-900), subject to the following recommendations.

8.1 Remediation of Uncontrolled Fill

For lots identified to be underlain by uncontrolled fill, we recommend that at the time of subdivision development, further investigation is undertaken to determine appropriate remediation where necessary.

From our investigations to date, we recommend at least partial remediation in order to provide a suitable building platform per lot. Remediation works will likely include excavation of the fill material and replacement with engineered hardfill, in accordance with our earthworks recommendations below. Consideration could be given to other ground improvement solutions such as ridged inclusions (timber piles or stone columns)..

8.2 Earthworks

We recommend that permanent cuts are formed at no greater than 26° in soil and 55° in rock. Temporary cut batter angles may be formed up to 45° in soil and 63° in rock. If these angles cannot be accommodated within the layout of any proposed development, then retaining walls will be required.

Prior to placement of permanent fills, all vegetation, fill and topsoil should be stripped to expose the underlying native soils, which should then be benched to allow the placed fill to be adequately compacted. Filling works should be completed in accordance with NZS 4431:1989. Site won soils are likely to be suitable for re-use as fill (excluding the surficial topsoil and existing uncontrolled fill material), subject to testing.

To calculate maximum dry density of the placed fill, compaction testing will be required (for both sitewon fill and imported fill). We recommend that this is considered prior to commencement of earthworks to avoid any delays to the program while awaiting these results.

In conjunction with detailed design, we recommend that consideration is given to control of stormwater runoff, and that this is diverted into a series of pipes and then into the stormwater system to minimise water flow across undeveloped areas of the site and associated erosion. Further, undeveloped sloping areas of the site should be vegetated where practicable to further improve the stability of the slope.

8.3 Site Drainage

Large areas of the flat part of the site are cut by drainage channels, with the adjacent ground very soft and wet. As such we recommend that drainage works are considered in conjunction with subdivision development, and an assessment of flood levels is undertaken. It is likely that areas of the flat part of the site will require filling to achieve required ground elevations and to minimise flooding potential.

9 Future Works

Prior to applying for subdivision resource consent, we recommend that ENGEO should be given the opportunity to review the proposed lot layout against the hazard constraints map (presented in Appendix 11), and check for suitable building platforms in accordance with Upper Hutt City Council (UHCC) Code of Practice for Civil Engineering Works. For Subdivision Consent, further geotechnical reporting will be required to outline the findings of our assessment of natural hazards in accordance with Section 106 of the Resource Management Act and to provide recommendations in line with New Zealand Standard NZS4404 for Land Development and Subdivision Infrastructure.

10 Sustainability

We encourage you to consider sustainability when assessing the options available for your project. Where suitable for the project, we recommend prioritising the sustainable use of resources, using locally sourced materials where available, and installing in an environmentally friendly way (e.g., reduced carbon emissions and minimal contamination). If you would like to discuss these options further, ENGEO staff are available to offer suggestions.

11 Limitations

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Maymorn Developments Ltd, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ/ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission.

We trust that this information meets your current requirements. Please do not hesitate to contact the undersigned on (04) 472 0820 if you require any further information.

Report prepared by

Lauren Foote Engineering Geologist

Report reviewed by

Richard Justice, CMEngNZ (PEngGeol) Principal Engineering Geologist

12 References

Begg, J.G., and Johnston, M.R. (2000). Geology of the Wellington area. Institute of Geological and Nuclear Sciences. 1:250,000 geological map 10.

Boulanger, R. W., & Idriss, I. M. (2014). CPT and SPT Based Liquefaction Triggering Procedures. University of California, Davis, Ca, Department of Civil and Environmental Engineering.

Envelope Engineering (14 October 2021). Gabites BlockDevelopment Area Structure Plan. Project number 1594-01, drawing number PC-900, revision P3.

Google Earth Pro. Retrieved October 2021.

Greater Wellington Regional Council. Web Map Viewer. Retrieved October 2021 from https://mapping.gw.govt.nz/GW/GWpublicMap_Mobile/?webmap=72ece62d902e4c3fb6506136104ab bf9.

New Zealand Geotechnical Society (2005). Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes.

NZET Ltd (28 February 2021). Geotech Report, 1135 Maymorn Road, Maymorn, Upper Hutt.

New Zealand Transport Agency (2018). Bridge manual SP/M/022, third edition, amendment 3.

New Zealand Transport Agency (2018). Bridge manual commentary, first edition.

Retrolens Historical Image Resource. Retrieved October 2021 from https://retrolens.co.nz.

Robertson, P. K., and Wride, C. E. (1998). Evaluating Cyclic Liquefaction Potential using the Cone Penetration Test'. *Canadian Geotechnical Journal*, Ottawa, 35(3), 442–459.

Standards New Zealand (2010). Land Development and Subdivision Infrastructure, NZS 4404 Amendment No 1.

Standards New Zealand (2004). Structural Design Actions, Part 5: Earthquake Actions – New Zealand, NZS 1170.5:2004.

Standards New Zealand (2002). Structural Design Actions, Part 0: General principles, NZS 1170.0:2002.

Standards New Zealand (1989). Code of practice for Earth Fills for Residential Devlopment, NZS 4431:1989.

The Ministry of Business, Innovation, and Employment (2016). New Zealand Geotechnical Database. Retrieved October 2021, from https://www.nzgd.org.nz/Registration/Login.aspx#t3

The Ministry of Business, Innovation, and Employment and New Zealand Geotechnical Society Inc (2016). Earthquake geotechnical engineering practice, Module 1: Geotechnical investigations for earthquake engineering.

The Ministry of Business, Innovation, and Employment and New Zealand Geotechnical Society Inc (2016). Earthquake geotechnical engineering practice, Module 2: Overview of the guidelines.

The Ministry of Business, Innovation, and Employment and New Zealand Geotechnical Society Inc (2016). Earthquake geotechnical engineering practice, Module 3: Identification, assessment and mitigation of liquefaction hazards.

Upper Hutt City Council (20 July 1998). Code of Practice for Civil Engineering Works. Revision 7.

Upper Hutt City Council, PC47 – Natural Hazards. Retrieved October 2021 from https://www.upperhuttcity.com/Your-Council/Plans-policies-bylaws-and-reports/District-Plan/PC47

Welsh, A. and Davies, T. (2010). Identification of alluvial fans susceptible to debris-flow hazards.

Zhang, G., Robertson, P. K., and Brachman, R. (2002). Estimating Liquefaction Induced Ground Settlements from the CPT. *Canadian Geotechnical Journal*, 39, 1168-1180.

Upper Hutt City Council, Xplorer (Public), Property Boundaries & Labels. Retrieved October 2021 from https://maps.uhcc.govt.nz/Viewer/?map=cb54215cc7344286b8b3424a3a29f07f

APPENDIX 1: NZET Ltd Consulting Engineers Subsurface Investigations

NZET Scala Penetrometer and Dynamic Penetration Heavy Test Results

FIGURE 14. 2013 SHALLOW TEST PIT LOCATIONS

 $FIGURE \ 14. \ Shallow \ test \ pits \ through \ lower \ flats \ 2013, \ hole \ numbers \ shown \ on \ photos.$

APPENDIX 2:

Historical Aerial Photographs

ORIGINAL FIGURE PRINTED IN COLOUI

ORIGINAL FIGURE PRINTED IN COLOUR

ORIGINAL FIGURE PRINTED IN COLOUI

Logging works completed, and slopes largely de-vegetated

PARKES

Planting across flat areas of site

Initial channel infill and pond formation

DRNROA

Earthworks forming large clearing

Earthworks forming large clearing

Ponds have been filled

River channel has been filled

Pond fully formed

APPENDIX 3:

Historical Features Mapping from Historical Aerial Photographs

Legend

- 🕥 🛛 Previous River Channel
- Previous Effluent Pond
- Previous Building
 Forestry Tracks 2003
 Site Boundary

0 50 m 100 m LINZ CC BY 4.0 © Imagery Basemap contributors

Produced by Datanest.earth

Title: Historical Features		
Client: Gillies Group Ltd		2
Project: Gabites Block, Upper Hutt	Drawn: LF	Figure No:
Date: 29-07-2021	Checked:	Size: A3
Proj No: 19071.000.001 Overall page	Scale: n ଧାନିତିତି ପ୍ୟ11	Version:

APPENDIX 4:

Geomorphological Map

Legend

- 🔲 Site Boundary
- 😑 🛛 Alluvial Fan
- 🙆 Rock outcrop
- listorical Landslide
- Pushover Fill
- Truncated slope / cut
 Recent Failure
- Out Platform
- 🙆 Pond

Produced by Datanest.earth

Title: Geomorphic Featu	res	
Client: Gillies Group Ltd		
Project: Gabites Block, Upper Hutt	Drawn: LF	Figure No:
Date: 29-07-2021	Checked:	Size: A3
Proj No: 19071.000.001 Overall page	Scale: e n ଧାରିପରି ପ୍ୟ13	Version:

APPENDIX 5:

Machine Borehole Logs

		-	Λ	GEO	L	OG	6 O	F	B	OR	ING I	BH	01	
			Ga May 190	bites Block ymorn Road Maymorn)71.000.001	Clie Da Hole Dep Drilling Meth Drilling Contract	ent:G ate:0 oth:1 od:R tor:G	illies (3/09/2 9.57 m otosor	Grou 1 n nic 5 Dril	p Lir	nited Er Loge	Core nergy Trans ged By/Rev	Diame sfer Ra viewed Latite ongite	eter: 83 mm atio: 89 % IBy:LF/CM ude: -41.1073 ude: 175.138	95 782
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	ИС	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
-	Т		ML ML	[TOPSOIL] SILT with trace root brown. Low plasticity. SILT: light vellowish brown. Low	lets; light yellowish					Firm*				
0.5 -			GP	Fine to medium GRAVEL with s light yellowish brown. Poorly gra	some silt and sand; aded, subangular	°0°<				Loose*				
1.0			ML	to rounded, greywacke; sand is SILT with minor sand; light yello plasticity; sand is fine.	fine to coarse.					Firm to Stiff*				
- - 1.5 - -			GP	Fine to medium GRAVEL with s minor sand; light yellowish brow subangular to rounded, greywad coarse.	some silt and m. Poorly graded, cke; sand is fine to					Loose	5/5//4/2/2/2			
2.0-		ML SILT; light yellowish brown we mottles. Low plasticity. Fine to medium GRAVEL wi minor sand; light yellowish be subangular to rounded, grey			orange and grey					Stiff	N=10			
2.5 -		ML SILT; light yellowish brown w ML SILT; light yellowish brown w mottles. Low plasticity. Fine to medium GRAVEL with Fine to rounded, greyn coarse. GW Fine to coarse GRAVEL with light yellowish brown. Well gith			some silt and /n. Poorly graded, cke; sand is fine to				M	Loose to Medium Dense*				
3.0	JVIUM/COLLUVIUM	GW Fine to coarse GRAVEL with sor light yellowish brown. Well grade subangular, greywacke; sand is t			ome silt and sand; ed, angular to fine to coarse.					Dense	5/8//8/8/6/8 N=30			
4.0	ALLL			4.1 m - Trace cobble with maxir 80 mm.	num dimension of									
4.5 -			GW	Fine to coarse GRAVEL with so grey. Well graded, subangular t greywacke; sand is fine to coars	ome silt and sand; o subrounded, se.				M-W	Dense	8/7//6/8/10/12 N=36			
5.5	ML SILT with minor gravel; grey. L is fine to medium, subangular t greywacke.			SILT with minor gravel; grey. Lo is fine to medium, subangular to greywacke.	w plasticity; gravel o subrounded,				м	Stiff to Hard*	35/15 for			
6.5 -	GM Silty fine to coarse GRAVEL wi grey. Well graded, angular to ro sand is fine to coarse.				h minor sand; unded, greywacke;				D-M	Very Dense	15mm N=50+			
7.0 Mach *Infer T = T	ine b red b OPS	oore base OIL	ehole r ed on	net target depth at 19.57 m. diagnostic properties.		~1\b	L	I	1			1		I

		-	\wedge	GEO	L	OG	i 0	F	B	OR	ING I	BH	01	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Da Hole Dep Drilling Meth Drilling Contract	ent:G ate:03 oth:19 od:R tor:G	illies (3/09/2 9.57 m otosor riffiths	Grou 1 n nic 5 Dril	p Lir	nited Er Log	Core nergy Trans ged By/Rev I	Diame sfer Ra viewed Latite Longite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1073 ude: 175.138	95 782
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
-			GM	Silty fine to coarse GRAVEL wit grey. Well graded, angular to ro sand is fine to coarse.	h minor sand; unded, greywacke;				D-M	Very Dense				
7.5 - - -			ML	Clayey SILT with trace sand; gr	ey. Low plasticity.					Stiff	2/3//3/4/3/4 N=14			
8.0		Π	SM	Silty fine to coarse SAND with s grey. Well graded; gravel is fine	come gravel; light to medium,					Loose to Medium	l			
8.5 -			ML	SILT with minor sand; light grey sand is fine.	. Low plasticity;					Dense Firm to Stiff*				
9.0			GP	Sandy fine to medium GRAVEL grey. Poorly graded, angular to greywacke; sand is fine to coars	with some silt; subangular, se.				м		4/6//8/4/4/4 N=20			
9.5 - - -		 grey. Poorly graded, angular to subangular, greywacke; sand is fine to coarse. 9.3 m - 100 mm thick lens of organic silt encountered. 	ganic silt					Medium Dense	I					
- 10. 0- - -	-LUVIUM		ML	SILT; grey. Low plasticity.						Stiff to Very Stiff*				
10.5- - -	IVIUM/COI		GW	Fine to coarse GRAVEL with so grey. Well graded, subangular t greywacke; sand is fine to coars	ome sand and silt; o subrounded, se.						16/34 for 75 mm N=50+			
- 11. 0 - - -	ALLU								M-W					
- 11.5- -														
12. 0									D	Dense to Very Dense	7/7//13/10/7/12	2		
- - 12.5- - -									м		N=42			
- 13. 0 - - -									D					
- 13.5- - - -			GW	Fine to coarse GRAVEL with so sand; brownish grey. Well grade subrounded, greywacke; sand is	ome silt and minor ed, subangular to s fine to coarse.				м	Very Dense	6/12//35/15 for 75 mm N=50+			
14.0 Machi *Inferi T = T(ine b red b OPS	oore base OIL	ehole ı ed on	met target depth at 19.57 m. diagnostic properties.				1	1			I		I

			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clia Da Hole Dep Drilling Meth Drilling Contrac	ent: ate: oth: od: tor:	Gillies 07/09/ 19.95 Rotosc Griffith	Grou 21 m onic is Dri	ip Lir ling	nited Er Log	Core nergy Trans ged By/Rev I	Diame sfer Ra viewed Latite Latite	eter: 83 mm atio: 89 % By:LF/CM ude: -41.1063 ude: 175.1370	07)9
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 0.5 -	Т		ML	[TOPSOIL] SILT with some org- and gravel; dark brown. Low pla to coarse; gravel is fine, subrou greywacke. SILT; yellowish brown with grey	anics, trace sand sticity; sand is fine nded to rounded, 	1 <u>7. 17</u> . <u>1</u> . 1 <u>7</u> . <u>1</u> .				Soft to Firm*				
- - - 0.			ML	mottles. Low plasticity. Sandy SILT; light grey. Low plas	sticity; sand is fine.					Soft to Firm*				
- - - - - - - - - - - - -			ML Sandy SILT; light grey. Low plasticity; sand is f GW Sandy fine to coarse GRAVEL with some silt a trace cobble; brown. Well graded, subangular t rounded, greywacke; sand is fine to coarse; cobble is subrounded, greywacke. Maximum cobble dimension is 70 mm. ML Sandy SILT with minor gravel; orange brown. I util plasticity; sand is fine to coarse; gravel is fine to						M	Medium Dense	9/15//8/4/4/4 N=20			
.5 -			ML ML	Sandy SILT with minor gravel; c plasticity; sand is fine to coarse; medium, subangular to rounded Gravelly SILT with minor sand; plasticity; gravel is fine to coarse subangular, greywacke; sand is	gravel; orange brown. Low ocarse; gravel is fine to rounded, greywacke. r sand; brown. Low o coarse, angular to sand is fine to coarse.				D	Stiff*				
.0 .5 	COLLUVIUM			3.0 m - Gravel becomes subanç	gular to rounded.					Very Stiff	2/1//1/3/8/8 N=20			
	NM/		ML	SILT: brown. Low plasticity.										
.0	ALLUVI		GM ML SM	Silty fine to coarse GRAVEL with brown. Well graded, subangular greywacke; sand is fine to coars 4.3 m - Sand becomes minor. C dark brown. Sandy SILT; brown. Low plastic Silty fine SAND; grey. Poorly grad	h some sand; to subrounded, se. colour becomes ity; sand is fine.				м	Loose to Medium Dense* Soft to Firm Very Loose to Loose	1/1//1/1/2 N=5			
5			ML	Sandy SILT; brown. Low plastic	asticity; sand is fine. EL; grey. Well graded, sand is fine to coarse. ticity; sand is fine. rey. Well graded.	<u></u>	-			Soft to Firm*				
0 - - 5 -			GW ML SM	Sandy fine to coarse GRAVEL; subangular to subrounded; sand Sandy SILT; grey. Low plasticity Silty fine to coarse SAND; grey.						Loose Soft	4/3//1/1/2/2 N=6			
			GP	Sandy fine GRAVEL; grey. Pool subangular to subrounded, grey	rly graded, wacke; sand is					Loose*				

		-	Λ	GEO	L	С)G	6 O	F	B	OR	ING	BH	02	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Da Hole Dep Drilling Meth Drilling Contract	ent ate oth od	: G : 0' : 1' : R : G	illies (7/09/2 9.95 m otosor	Grou 1 n nic s Dri	p Lir ling l	nited Er Loge	Core nergy Tran ged By/Rev	Diame sfer Ra /iewed Latite _ongite	eter: 83 mm atio: 89 % I By: LF / CM ude: -41.1063 ude: 175.1370	07 19
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	ЛС		Log symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
7.5 -			ML	fine to coarse. Sandy SILT with minor gravel; t plasticity; sand is fine; gravel is subrounded to rounded, greywa	bluish grey. Low fine to medium, icke.					м	Firm to Stiff	1/1//1/3/3/4 N=11			
8.0		Π	GP	Sandy fine to medium GRAVEL Poorly graded, subangular to ro	.; bluish grey. unded, greywacke;	ۍ ه (\mathcal{V}			w	Loose*				
8.5 -	IML sand is fine to coarse. Sandy SILT; bluish grey. Low fine. GW Fine to coarse GRAVEL with dark bluish grey. Well graded subangular, greywacke; sand sandy fine to coarse GRAVEL			Sand is fine to coarse. Sandy SILT; bluish grey. Low pl fine.	asticity; sand is					м	Firm to Stiff*				
9.0	GWFine to coarse GRAVEL with dark bluish grey. Well graded subangular, greywacke; sand Sandy fine to coarse GRAVEMLgrey. Well graded, angular, gr fine to coarse.SILT; light bluish grey. Low plan			Fine to coarse GRAVEL with m dark bluish grey. Well graded, a subangular, greywacke; sand is Sandy fine to coarse GRAVEL grey. Well graded, angular, grey	inor silt and sand; ingular to fine to coarse. with minor silt; wacke; sand is					wı	Loose to Mediun <u>Dense</u> Medium Dense	4/6//2/4/3/2 N=11			
9.5 -	Sandy fine to coarse GRAVEL with min grey. Well graded, angular, greywacker fine to coarse. SILT; light bluish grey. Low plasticity.			sticity.						Stiff					
- - 10. 0- - -	LUVIUM		SM	Silty fine to coarse SAND with t bluish grey. Well graded; gravel angular to subrounded, greywad	race gravel; light is fine to medum, cke.						Vedium Dense*	1			
10.5	I/COL		ML	SILT; light brown. Low plasticity	·.						Stiff*				
			SW	Fine to coarse SAND with mino graded.	r silt; grey. Well					1	Medium Dense	2/2//3/4/5/5 N=17			
11. 0 - - -	ALI		ML	SILT; dark greyish brown. Low	plasticity.						Stiff*				
11.5 - - -			SM ML	Silty fine to coarse SAND with t grey. Well graded; gravel is fine subrounded, greywacke. SII T: dark greyish brown 1 ow	race gravel; bluish to medium,					м	Medium Densef Stiff*				
12.0			ML	Sandy SILT; grey. Low plasticity	; sand is fine.						Hard	1/7//8/22/20 for 60 mm			
- - 12.5- -		Π	GW, ML	Fine to coarse GRAVEL with m grey. Well graded, angular, grey fine to coarse.	inor silt and sand; wacke; sand is						Very Dense	N=50+			
13. 0			ML	Sandy SILT; light greyish brown sand is fine.	. Low plasticity;						Hard*				
13.5- - -	SM Silty fine to coarse SAND with trace Well graded; gravel is fine to coarse subangular, greywacke.			race gravel; grey. arse, angular to						Medium Dense	1 2/2//4/2/3/4 N=13				
			ML								Stiff				
Mach *Infer T = T	ne b red b OPS	ore base OIL	ehole r ed on -	net target depth at 19.95 m. diagnostic properties.											

		-	Λ	GEO	L	.00	60	F	B	OR	ING I	ЗH	02	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Metl Drilling Contrad	ient:C Date:0 Ppth:1 hod:R ctor:C	illies (7/09/2 9.95 n otosor	Grou 1 n nic 5 Dril	p Lir ling l	nited Er Log	Core nergy Trans ged By/Rev I	Diame sfer Ra riewed Latite	eter: 83 mm atio: 89 % IBy:LF/CM ude: -41.1063 ude: 175.1370	07)9
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
Debth D-bth 1-BH07-FINAL.GPJ NZ DATA TEMPLATE 2.GDT 19/10/21 1.5.0 10.0 10.0 10.0 10.0 10.0 10.0 10	ALLUVIUM/COLLUVIUM	Samp	SDSN ML SW ML GW SM GP ML SM ML -	SILT with organic lenses; greyis plasticity. Fine to coarse SAND with some yellowish brown mottles. Well g fine to coarse, angular to subar Sandy SILT; light greyish brown sand is fine. Sandy fine to coarse GRAVEL of grey. Well graded, angular to su greywacke; sand is fine to coarse greywacke; sand is fine to coarse Silty fine to coarse SAND with t grey. Well graded; gravel is fine subangular to rounded, greywac Silty fine to coarse GRAVEL; gr angular, greywacke. Fine to medium GRAVEL with s bluish grey. Poorly, angular to r greywacke; sand is fine to coarse Sandy SILT; bluish grey. Low p fine. SILT; greyish brown. Low plasti No recovery	sh brown. Low e gravel; grey with raded; gravel is igular, greywacke. n. Low plasticity; with some silt; ubangular, se. race gravel; light to coarse, cke. rey. Well graded, cke. rey. Well graded, some sand and silt; ounded, se. lasticity; sand is city. hics; greyish city.		Elevat	Water	M	Very Dense*	3/5//15/35 for 70 mm N=50+ 5/7//9/10/14/17 for 60 mm N=50+ 50 for 65 mm N=50+	Torva (kPa)		
				End of Hole Depth: 19.95 m Termination: Target depth						-				
öllviaci ≝lnfe ≝T=1	rred b	ore case	ed on	diagnostic properties.										

			Λ	GEO	L	. O G	6 O	F	B	OR	ING I	BH	03	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Metl Drilling Contrac	ent:G ate:0 pth:1 hod:R ctor:G	illies (3/09/2 9.95 n otosoi iriffiths	Grou 1 n nic s Dri	p Lir lling	nited Er Log	Core nergy Trans ged By/Rev	Diame sfer Ra viewed Latite Longite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1059 ude: 175.1344	72 108
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
0.5 -	F		ML	[TOPSOIL] SILT with some san brown. Low plasticity; sand is fin gravel is fine, angular, greywach [FILL] SILT with minor sand, gr	d and trace gravel; ne to coarse; ke. avel and trace					Soft to				
- - 1.0			ML GW	charcoal; light yellowish brown white and grey bands. Low plas to coarse; gravel is fine to coars subrounded, greywacke. [FILL] SILT with minor gravel, th	with yellowish ticity; sand is fine se, subangular to race sand, wood,									
			GM	rootlets and charcoal; grey. Low is fine to coarse, angular, greyw to coarse. [FILL] Sandy fine to coarse GR, silt, trace asphalt and concrete;	v plasticity; gravel vacke; sand is fine AVEL with minor grey. Well graded,						20/15//3/4/3/3 N=13			
2.0				[FILL] Silty fine to coarse GRAN sand and trace charcoal; grey. N angular to subrounded, greywar coarse.	e to coarse. /EL with minor /Vell graded, /ke; sand is fine to					Medium Dense	1			
2.5	 angular to subrounded, greywacke; sand is coarse. [FILL] Fibre board. ML [FILL] SILT with minor gravel, trace sand, t glass and charcoal; brownish grey. Low pla gravel is fine to coarse. 				ace sand, trace					N/A				
	FILL			gravel is fine to coarse, subang sand is fine to coarse.	ular to rounded;				м	Soft to Firm	1/1//1/1/1 N=4			
4.0			GW	[FILL] Sandy fine to coarse GR. silt; light grey. Well graded, ang greywacke and concrete: sand	AVEL with minor ular to rounded, s fine to coarse									
4.5 -			GW	[FILL] Silty fine to coarse GRA\ sand, trace rubber, fibre board, light grey. Well graded, angular greywacke; sand is fine to coars	/EL with some wood and brick; to subrounded, se.					Loose	4/3//1/1/1/1 N=4			
5.5 -														
6.0			OL	[FILL] Organic SILT with some trace brick; greyish brown. Low fine to coarse, angular to subro sand is fine to coarse.	gravel, sand and plasticity; gravel is unded, greywacke;					Firm	0/0//1/1/2/3 N=7			
0.5 - - - - - -	A/C		ML	Sandy SILT; grey. Low plasticity	r; sand is fine.					Firm*				
Mach *Infer	ine b red b OPS	ore bas OIL	ehole i ed on -	net target depth at 19.95 m. diagnostic properties.		A/C	; = AL	LVU	IUM	COLL	VUIUM			

		-	Λ	GEO	L	00	6 0	F	B	OR	ING I	BH	03	
			Ga Ma 190	bites Block ymorn Road Maymorn)71.000.001	Clie Di Hole Dep Drilling Meth Drilling Contrac	ent:0 ate:0 oth:1 od:F tor:0	Gillies C 3/09/2 9.95 m Rotosor Griffiths	Grou 1 n nic s Dri	p Lir Iling	nited Er Loge	Core nergy Trans ged By/Rev I	Diame sfer Ra /iewed Latite Longite	eter: 83 mm atio: 89 % IBy:LF/CM ude: -41.1059 ude: 175.1344	72 408
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
			SM ML GP	Silty fine to medium SAND; gre Sandy SILT; light brownish grey Low plasticity; sand is fine.	y. Poorly graded.					Loose* Firm*				
7.5 -			ML	graded, angular to subrounded, is fine to coarse.	greywacke; sand				'	to Medium Dense	N=10			
8.0 - - -		Π	GW	fine. Sandy fine to coarse GRAVEL v grey. Well graded, subangular t greywacke; sand is fine to coars	with some silt; o subrounded, se.					Firm Loose*				
8.5 - - - -		ML SILT with minor sand; grey. fine. SW Fine to coarse SAND with m graded. ML Sandy SILT; grey. Low plast		SILT with minor sand; grey. Lov fine.	v plasticity; sand is				м	Firm*				
9.0			SW	Fine to coarse SAND with mino graded. Sandy SILT; grey. Low plasticity coarse.	r silt; grey. Well					Loose* Stiff	2/1//3/3/2/2 N=10			
- - - 10. 0- -	UVIUM		GM ML	Silty fine to medium GRAVEL w grey. Poorly graded, subangular greywacke; sand is fine to coars Sandy SILT; grey. Low plasticity	vith some sand; to rounded, se. /; sand is fine.	0 0				Medium Dense [*] Stiff to Very	1			
10.5	M/COLL		GP	Fine to medium GRAVEL with s Poorly graded, subangular, grey	some silt; grey. wacke.					Dense	10/140/10/12/1	6		
11. 0 11. 0 11.5	ALLUVIU		GP	Fine to medium GRAVEL with r sand; yellowish brown. Poorly g greywacke; sand is fine to coars	ninor silt and raded, subangular, se.						N=47			
12. 0 12. 0				12.1m - Colour changes to grey	<i>'</i> .				M-W	Dense to Dense	3/5//3/6/7/5 N=21			
- - 13. 0- - -			ML	SILT with minor sand; brownish plasticity; sand is fine.	grey. Low					Very Stiff to Hard*				
13.5	GM Silty fine to coarse GRAVEL with s grey. Well graded, angular to subal greywacke; sand is fine to coarse.			Silty fine to coarse GRAVEL wit grey. Well graded, angular to su greywacke; sand is fine to coars	h some sand; ibangular, se.				w	Very Dense	4/15//28/22/1 for 45 mm N=50+			
Mach *Infer	ine b red b OPS	oore base OIL	ehole r ed on	net target depth at 19.95 m. diagnostic properties.		A/C	C = ALI	LVU	IUM	COLL	VUIUM			

		-	Λ	GEO	L	.OG	0	F	B	OR	ING	BH	04	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Di Hole De Drilling Meth Drilling Contrac	ent : G ate : 03 pth : 19 nod : R tor : G	illies 6 3/09/2 9.95 m otosor riffiths	Grou 1 nic Dril	p Lir Iling	nited Er Loge	Core nergy Tran ged By/Rev	Diame sfer Ra /iewed Latite Longite	eter: 83 mm atio: 89 % IBy:LF/CM ude: -41.1047 ude: 175.1333	21 335
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
	FILL		ML ML ML	 [FILL] SILT with minor gravel ar yellowish brown. Low plasticity; medium, angular to subrounded is fine to coarse. [FILL] SILT with some gravel ar brown. Low plasticity; gravel is fine to coarse. [FILL] SILT with some gravel ar brown. Low plasticity; gravel is fine to coarse. [FILL] SILT with minor sand, trawod; light yellowish grey. Low fine to coarse; gravel is fine, su subrounded, greywacke. [FILL] SILT with trace gravel an plasticity; gravel is fine to coarse; gravel is fine, su subrounded, greywacke. [FILL] SILT with some gravel an plasticity; gravel is fine to coarse; gravel is fine to coarse. [FILL] SILT with some gravel an plasticity; gravel is fine to coarse. [FILL] SILT with some gravel ar brownish grey. Low plasticity; gravel is fine to coarse. [FILL] SILT with some gravel ar brownish grey. Low plasticity; gravel is fine to coarse. [FILL] SILT with some gravel ar brownish grey. Low plasticity; gravel is fine to coarse. 4.0 m - Trace metal. 	intro sand and ity; sand is fine to a, angular to and sand; light gravel is fine to d, greywacke; sand ind sand; yellowish fine to coarse, e to coarse, e to coarse. acce gravel and plasticity; sand is bangular to d sand; grey. Low e, subrounded to fine to coarse. and minor sand; ravel is fine to and is fine to				M-W	Very Soft* Firm Soft to Firm*	2/2//2/2/2/1 N=7 0/1//1/1/1/1 N=4			
4.5 - 5.0 - 5.5 - 6.0 - - 6.5 -	VIUM/COLLUVIUM		ML	5.0-5.8 m - Trace brick. SILT with minor gravel; grey. Lo is fine to coarse, angular to sub greywacke. Fine to coarse GRAVEL with m grey. Well graded, angular, grey fine to coarse.	I. prick. avel; grey. Low plasticity; gravel ngular to subrounded, AVEL with minor silt and sand; angular, greywacke; sand is				D	Firm	1/0//1/0/0/3 N=4 2/1//1/1/3/2 N=7			
- 7.0 Mach *Infer TS =	ine to red to TOP	oore base 2SO	ehole r ed on	Fine to coarse SAND with some silt; grey. Well graded; gravel is net target depth at 19.95 m. diagnostic properties.	e gravel and minor fine to coarse,									

			\wedge	GEO	L	.00	6 O	F	B	OR	ING I	BH	04	
			Ga Ma 190	ibites Block ymorn Road Maymorn)71.000.001	Cli D Hole De Drilling Meth Drilling Contrac	ent : G ate : 0 pth : 1 nod : R tor : G	illies (3/09/2 9.95 m otosor	Grou 1 n nic s Dril	p Lir Iling	nited Er Log	Core nergy Trans ged By/Rev	Diame sfer Ra viewed Latit	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1047 ude: 175.1333	21
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	ON	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
ИС ВНГОСЗ ВНОІ - ЕНКЫТИЕ 5.6D1 19/10/21	ALLUVIUM/COLLUVIUM		ML SM SP ML SM ML GP ML GP SW	angular to subrounded, greywad SILT with trace sand; grey. Low fine to coarse. 7.4 m - Organic lenses. Silty fine to coarse SAND with s Well graded; gravel is fine to me greywacke. Fine SAND with some silt; grey. SILT with trace sand; grey. Low fine to coarse. 8.4 m - Organic lenses. Silty fine SAND with trace grave graded; gravel is fine, angular, g Fine to coarse SAND with some graded; gravel is fine to coarse, greywacke. Sandy SILT; grey. Low plasticity SILT with trace sand; brownish plasticity, sand is fine to coarse. Fine to coarse GRAVEL with m grey. Well graded, subangular to greywacke; sand is fine to coarse Saty SILT with minor sand; grey. Low fine. Fine to medium GRAVEL with s grey. Poorly graded, angular to greywacke; sand is fine to coarse Saty SILT with organic lenses plasticity; sand is fine. SILT; grey. Low plasticity. Sandy SILT with reddish brown. angular to subrounded, greywac coarse. Saty fine to medium GRAVEL grey mixed with reddish brown. angular to subrounded, greywac coarse. Saty fine to medium GRAVEL grey with reddish brown and gre mottles. Poorly graded, angular chert; sand is fine to coarse. Fine to coarse SAND with some atter second is fine to coarse. Fine to coarse SAND with some atter second s	ke. plasticity; sand is come gravel; grey. edium, angular, Poorly graded. plasticity; sand is el; grey. Poorly greywacke. e gravel; grey. Well angular, r; sand is fine. grey. Low inor sand and silt; o subrounded, se. v plasticity; sand is some sand and silt; subrounded, se. ; grey. Low with some silt; Poorly graded, ke; sand is fine to plasticity; sand is with some silt; plasticity; sand is plasticity; sand is with some silt; plasticity; sand is plasticity; sand is pla				M-W	Firm to Stiff* Medium Dense Stiff to Very Stiff* Medium Dense Stiff to Very Stiff* Medium Dense Stiff to Very Stiff* Dense Very Stiff* Dense Very Stiff* Dense	5/5//4/7/10/8 N=29 1/3//3/4/5/5 N=17 2/4//5/4/7/5 N=21 4/12//10/12/6/5 N=33			
- 13.5 - -				silt; grey with reddish brown and mottles. Well graded; gravel is f angular, greywacke.	d greyish green ine to medium,					Dense	8/10//15/18/17 for 40 mm N=50+			
14.0 HOH HOH Mach *Infer TS =	ine b red b TOP	oore bas SO	ehole r ed on IIL	net target depth at 19.95 m. diagnostic properties.				1	1	1	1	1		

		-	\wedge	GEO	L	00	G	0	F	B	OR	ING I	ЗH	04	
			Ga Ma 190	bites Block ymorn Road Maymorn 071.000.001	Clin Di Hole Dej Drilling Meth Drilling Contrac	ent: ate: pth: nod: tor:	Gill 03/ 19. Ro Gri	lies G 09/2 95 m toson ffiths	Grou 1 nic Dril	p Lir	nited Er Loge	Core nergy Trans ged By/Rev L	Diame sfer Ra riewed Latite ongite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1047 ude: 175.1333	21
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol		Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
			SW	Fine to coarse SAND with some silt; grey with reddish brown and mottles. Well graded; gravel is f angular, greywacke.	e gravel and minor d greyish green ine to medium,		• • • • • • • • • • • • • •			M-W	Very Dense				
- - - 15.5- -		ML SILT with minor sand; grey. If fine. SM Silty fine to coarse SAND; gr SW Fine to coarse SAND with mingrey. Well graded; gravel is fine subrounded, greywacke.			v plasticity; sand is Well graded.						Very Stiff Vedium Dense	2/7//4/10/3/5 N=22			
	DLLUVIUM	SW Fine to coarse SAND with mir grey. Well graded; gravel is fir subrounded, greywacke.			r gravel and silt; , angular to		· · · · · · · · · · · · · · · · · · ·			w	to <u>Dense</u> *	1/8//10/10/6/6 N=32			
17. 0 - - 17.5 - - - 18. 0 -	ALLUVIUM/CC		SM	Silty fine to coarse SAND; grey. 17.2 m - Minor gravel noted; fin angular, greywacke. SILT with some sand; grey. Lov fine.	Well graded. e to medium, v plasticity; sand is						Dense*	2/2//2/3/3/4			
- 18.5 - - - 19. 0			OL SW	Organic SILT; dark brown. Low Fine to coarse SAND with some grey. Well graded; gravel is fine to subrounded, greywacke.	plasticity. e gravel and silt; to coarse, angular					M-W	Stiff	N=12			
- - - - - - - - - - - - - - - - - - -			SM SW ML	Silty fine to coarse SAND with r reddish grey. Well graded; grave medium, angular to subrounded Fine to coarse SAND with some gravel; light bluish grey banded green. Well graded; gravel is fin angular to subangular, gravel as fin	ninor gravel; light el is fine to l, greywacke. e silt and minor with yellow and le to medium, ke and chert						Dense*	0/0//2/3/3/3 N=11			
				SILT with trace sand; light yello plasticity; sand is fine to coarse End of Hole Depth: 19.95 m Termination: Target depth	wish brown. Low										
Mach *Infer TS =	ine b red b TOP	oore base 2SO	hole r ed on IL	net target depth at 19.95 m. diagnostic properties.											

			\wedge	GEO	L	.OG	i 0	F	B	OR	ING	BH	05	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Client: Gillies Group LimitedCore Diameter: 83 mmDate: 03/09/21Energy Transfer Ratio: 89 %Hole Depth: 19.95 mLogged By/Reviewed By: LF / CMDrilling Method: RotosonicLatitude: -41.104223Drilling Contractor: Griffiths Drilling LtdLongitude: 175.132025									
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTION			Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
-	Т		ML	[TOPSOIL] SILT with minor roo plasticity.	tlets; brown. Low					Stiff to Very Stiff*				
0.5 -			ML	[FILL] SILT with some gravel; y Low plasticity; gravel is fine, sul rounded, greywacke.	ellowish brown. prounded to									
1.0			ML	[FILL] SILT; grey with orange m plasticity.	nottles. Low					Stiff to Very Stiff*				
1.5 - - - 2.0- - -			GM	[FILL] Silty fine to coarse GRA\ sand; brownish grey. Well grad rounded, greywacke; sand is fir	/EL with minor ed, subangular to le to coarse.					Medium Dense	5/5//9/7/4/3 N=23			
2.5 -	FILL		GM ML SM	[FILL] Silty fine to medium GRA sand; grey. Poorly graded; suba subrounded, greywacke; sand is [FILL] SILT; grey. Low plasticity	VEL with some ingular to s fine to coarse.					Firm to				
3.0				[FILL] Silty fine to coarse SANE grey. Well graded; gravel is fine rounded, greywacke.) with some gravel; , subangular to			м	Loose	6/3//3/2/2/1 N=8				
4.0-			ML	[FILL] SILT with some sand; greased is fine.	ey. Low plasticity;					Firm to Stiff*				
4.5 -			SW	[FILL] SAND with some silt and orange mottles. Well graded; gr subangular to rounded, greywad	gravel; grey with avel is fine, cke.					Loose*				
5.0			ML	SILT with minor sand; grey spectron Low plasticity; sand is fine.	ckled with white.						1/3//2/2/2/4 N=10			
5.5	JM/COLLUVIUM									Stiff				
6.5 -	ALLUVIL										1/3//2/4/3/5 N=14			
			SM	Silty fine SAND; grey. Poorly gr	aded.					Loose to				
Machi *Inferi T = T(7.0 Image: Second sec													

		-	\wedge	GEO	L	.OG	i 0	F	B	OR	ING I	BH	05	
			Ga Ma 190	bites Block ymorn Road Maymorn 071.000.001	Client: Gillies Group LimitedCore Diameter: 83 mmDate: 03/09/21Energy Transfer Ratio: 89 %Hole Depth: 19.95 mLogged By/Reviewed By: LF / CMDrilling Method: RotosonicLatitude: -41.104223Drilling Contractor: Griffiths Drilling LtdLongitude: 175.132025									
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
7.5 -			SW	Fine to coarse SAND with mino gravel; grey. Well graded; grave subangular to subrounded, grey	r silt and minor I is fine to coarse, wacke.				м	Vlediun Dense Dense	3/12//11/28/11			
8.0 8.0 8.5 - 8.5			GW	Fine to coarse GRAVEL with so minor silt; grey. Well graded, su rounded, greywacke; sand is fir	ome sand and Ibangular to le to coarse.				M-W	Very Dense	for 30 mm N=50+			
9.0			SW	Fine to coarse SAND with some grey. Well graded; gravel is fine subangular to rounded, greywad	e silt and gravel; to coarse, cke.					Vledium Dense	5/3//3/3/4/6 N=16			
10. 0 - - - - - - - - - - - - - - -	JVIUM/COLLUVIUM		SW	Fine to coarse SAND with some gravel; grey. Well graded, grave subangular to subrounded, grey	e silt and minor I is fine, wacke.					Dense	2/5//6/6/10/15 N=37			
11. 0 - - -	ALLI			10.9 m - Colour changes to dar	ark greenish grey.									
-			ML ML	SILT with trace sand; grey. Low fine. Sandy SILT; greenish grey band	v plasticity; sand is ded with orange.					Stiff to Very Stiff*				
12. 0 - - 12.5-			ML	SILT; grey banded with orange.	Low plasticity.					Very Stiff	5/4//5/5/7/7 N=24			
			SW	Fine to coarse SAND with some dark grey with reddish brown ba gravel is fine to coarse, subang greywacke.	e gravel and silt; ands. Well graded; ular to rounded,					Very Dense	4/7//8/11/31 for 75 mm N=50+			
14.0 Mach *Infer T = T	ine b red b OPS	oore base	ehole r ed on	net target depth at 19.95 m. diagnostic properties.		<u></u>		<u> </u>				<u> </u>		

		-	Λ	GEO	L	.00	6 O	F	B	OR	ING I	BH	05	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Client : Gillies Group Limited Core Diameter : 83 mm Date : 03/09/21 Energy Transfer Ratio : 89 % Hole Depth : 19.95 m Logged By/Reviewed By : LF / CM Drilling Method : Rotosonic Latitude : -41.104223 Drilling Contractor : Griffiths Drilling Ltd Longitude : 175.132025									
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTI	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 14.5- - -			SW	Fine to coarse SAND with some dark grey with reddish brown ba gravel is fine to coarse, subang greywacke.	e gravel and silt; ands. Well graded; ular to rounded,					Very Dense				
15. 0 15.5- 16. 0 - 			ML	SILT; brown. Low plasticity.		••••••			м	Stiff	1/1//2/4/4/4 N=14			
	ALLUVIUM/COLLUVIUM		GP GW	Sandy fine to medium GRAVEL dark grey with green and red m graded, subangular to rounded, chert; sand is fine to coarse. Fine to coarse GRAVEL with so brown. Well graded, angular to greywacke; sand is fine to coars	with minor silt; ottles. Poorly greywacke and ome sand and silt; subrounded, se.				w	Very Dense	10/16//50 for 75 mm N=50+ 8/24//40/10 for 5mm			
			SM	Silty fine to coarse SAND with s brown. Well graded; gravel is fin angular to subrounded, greywar	some gravel; ne to coarse, cke.				M-W	Dense to Very Dense	N=50+ 5/7//5/8/13/22 N=48			
Mach *Infer	ine b		ehole r ed on	End of Hole Depth: 19.95 m Termination: Target depth met target depth at 19.95 m. diagnostic properties.		<u>e. (e. 1.</u>			I			1		

Gabites Block Maymorn Road Maymorn 19071.000.001					Client: Gillies Group LimitedCore Diameter: 83 mmDate: 07/09/21Energy Transfer Ratio: 89 %Hole Depth: 19.675 mLogged By/Reviewed By: LF / CMDrilling Method: RotosonicLatitude: -41.103291Drilling Contractor: Griffiths Drilling LtdLongitude: 175.134098															
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIC	DESCRIPTION			Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes						
.5 -	FILL		ML GW ML	[FILL] SILT with some gravel, m wood; yellowish brown. Low pla fine to coarse, angular to round sand is fine to coarse. [FILL] Fine to coarse GRAVEL minor sand; yellowish brown. W	_] SILT with some gravel, minor sand, trace d; yellowish brown. Low plasticity; gravel is to coarse, angular to rounded, greywacke; d is fine to coarse. L] Fine to coarse GRAVEL with minor silt and pr sand; yellowish brown. Well graded					Firm* Loose*										
- - - - - - - - - - - - - - - - - - -				angular to rounded, greywacke; coarse. SILT with minor sand and trace brown with orange and grey mo plasticity; sand is fine; gravel is subangular to subrounded, grey	sand is fine to gravel; yellowish ttles. Low fine to medium, wacke.					Firm to Stiff	3/3//3/3/2/2 N=10									
.0			GM	Silty fine to coarse GRAVEL wit yellowish brown. Well graded, a subangular, greywacke; sand is	h some sand; ngular to fine to coarse.					Loose	1/1/1/10/01									
- - - - - - - - -	IUM/COLLUVIUM		ML GP ML GW	SILT; brown. Low plasticity. Sandy fine GRAVEL with minor brown. Poorly graded, angular to greywacke; sand is fine to coars SILT with some sand; greyish b	silt; dark orange o subrounded, se. rown. Low				м	Firm Loose* Firm* Loose*	N=7									
.5	ALLUVIUN							N	ML GP	Plasticity; sand is fine. Fine to coarse GRAVEL with sc sand; dark greyish brown. Well subrounded, greywacke; sand is SILT; light grey. Low plasticity. Fine GRAVEL with minor silt ar grey. Poorly graded, angular, gr fine to coarse.	ome silt and some graded, angular to s fine to coarse. Ind sand; bluish reywacke; sand is					Firm*	2/1//2/2/2/1 N=7			
.0			ML	SILT; light grey. Low plasticity.						Firm*										
		GP Fine to medium GRAVEL with somminor silt; light grey. Poorly graded, greywacke; sand is fine to coarse. GW Fine to coarse GRAVEL with some minor silt; light grey. Well graded a			some sand and led, angular, se. me sand and d, angular,					Dense to Very Dense	8/12//12/24/14 for 30 mm N=50+									
·			SP	greywacke; sand is fine to coars	se.					Medium	ı									

		-	Λ	GEO	L	.0	G	0	F	B	OR	ING I	BH	06	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Client : Gillies Group Limited Core Diameter : 83 mm Date : 07/09/21 Energy Transfer Ratio : 89 % Hole Depth : 19.675 m Logged By/Reviewed By : LF / CM Drilling Method : Rotosonic Latitude : -41.103291 Drilling Contractor : Griffiths Drilling Ltd Longitude : 175.134098								91)98		
Depth (m BGL	Material	Sample Type	USCS Symbol	DESCRIPTIO	DESCRIPTION			Elevation (mRL	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 7.5 - -			SP	Fine to medium SAND with mir gravel; grey. Poorly graded; gra medium, rounded, greywacke.	or silt and trace vel is fine to					м	Dense Vledium Dense	0/1//2/6/8/11 N=27			
8.0			GW	Sandy fine to coarse GRAVEL dark grey. Well graded, subang subrounded, greywacke; sand i	with minor silt; ular to s fine to coarse.					r M-W	Vedium Dense				
9.0			-	Core loss - no recovery.		NF	7				-	5/4//2/2/3/4 N=11			
9.5 - - - 10. 0 - - - - 10.5- - - -	νιημ/ςογγηνιμ		ML ML	Silty fine SAND; light bluish gre brown and yellowish brown mot graded. SILT; light bluish grey. Low plas Sandy SILT with trace gravel; lig Low plasticity; sand is fine; grav coarse, angular, greywacke.	y with reddish tites. Poorly ticity. ght bluish grey. rel is fine to					ſ	Loose to Vedium <u>Dense</u> * Very Stiff	2/4//5/7/6/6 N=24			
	ALLU		ML , ML	SILT; grey. Low plasticity. Sandy SILT with minor gravel; I plasticity; sand is fine; gravel is subangular to subrounded, grey	ght grey. Low fine to medium, wacke.					м	Very Stiff	2/3//3/5/5/3 N=19			
12.5- 13. 0-			ML ML ML	SILT with minor sand; light bluis plasticity; sand is fine. SILT with minor sand and grave speckled with white. Low plastic SILT; light bluish grev. Low plast	sh grey. Low al; light bluish grey sity; sand is fine. sticity.	,					Stiff to Very Stiff*				
13.5			ML	SILT with minor sand and grave Low plasticity; sand is fine to co to medium, subangular to subro greywacke.	arse; gravel is fine unded,						Stiff	1/1//3/4/4/4 N=15			
14.0 Mach *Infer	ine b red b	oore	ehole i ed on	met target depth at 19.675 m. diagnostic properties.						1					

		F	Λ	GEO	L	00	90	F	B	OR	ING I	BH	07	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Da Hole Dep Drilling Meth Drilling Contract	ent:0 ate:0 oth:1 od:F tor:0	Gillies ()8/09/2 9.95 n Rotosoi Griffiths	Grou 1 n nic s Dri	p Lir Iling	nited Er Loge	Core nergy Trans ged By/Rev I	Diame sfer Ra viewed Latite _ongite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1032 ude: 175.1322	44 242
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
0.5 -	BTS F TS	-	ML ML ML	[TOPSOIL] SILT with trace grav brown. Low plasticity; gravel is to rounded, greywacke. [FILL] SILT; light brown with ora plasticity. [BURIED TOPSOIL] Organic Si read to be been been by the statistic	rel and rootlets; fine, subrounded to ange mottles. Low		XXXX			Soft to Firm*				
1.0 			IVIL	SILT; light yellowish brown with Low plasticity.	orange mottles.					Soft to Firm				
2.0			GP	Sandy fine to medium GRAVEL brownish grey. Poorly graded, a subangular, greywacke; sand is	with minor silt; ngular to fine to coarse.					Loose	1/1//1/3/3/3 N=10			
3.0	M		ML	2.9 m - Orange brown mottles. SILT; grey. Low plasticity.							3/5//1/2/1/2 N=6			
3.5	JM/COLLUVIL			3.7 to 3.8 m - Trace organics/ar lenses.	morphous peat				м	Firm				
4.5 -	ALLUVII		SM ML	Silty fine SAND; grey. Poorly gr Sandy SILT; grey speckled with plasticity; sand is fine.	aded. white. Low					Loose* Firm				
5.0-		N	GP	Sandy fine to medium GRAVEL dark grey. Poorly graded, angula greywacke; sand is fine.	with some silt; ar to subangular,					Vedium Dense	2/5//7/5/4/4 N=20			
5.5 -			IVIL	5.7 m - 10 mm thick lens of fine grey. Well graded.	e to coarse SAND;					Loose to Medium Dense*				
6.5 -			GP ML	Fine to medium GRAVEL with s Poorly graded, subangular to su greywacke; sand is coarse. SILT; grey speckled with white.	some sand; grey. brounded, Low plasticity.					Medium Dense Stiff to Very Stiff	1/1//6/8/9/5 N=28			
Mach *Infer	ine b red b OPS	oore base SOIL	ehole i ed on	net target depth at 19.95 m. diagnostic properties.		F = BT	= FILL S = Bl	JRIE	D T	OPSOI	L			

		-		GEO	L	.00	i 0	F	B	OR	ING I	3H	07	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Meth Drilling Contrac	ent : G ate : 0 pth : 1 nod : R tor : G	illies (3/09/2 9.95 n otosor riffiths	Grou 1 n nic s Dri	p Lir Iling	nited Er Loge	Core nergy Trans ged By/Rev L	Diame sfer Ra riewed Latite ongite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1032 ude: 175.1322	44 242
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTI	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
			ML	SILT; grey speckled with white. 7.3 m - Trace organics encount	Low plasticity. ered.					Stiff to Very Stiff	215112121212			
8.0			GM	Silty fine to medium GRAVEL v bluish grey. Poorly graded, ang greywacke; sand is fine to coar	vith some sand; ular to subrounded, se.					Loose to Medium Dense	N=10			
8.5 - - - 9.0-			ML ML	SILT; bluish grey. Low plasticity 8.6 m - 10 mm thick organic sil Sandy SILT; bluish grey. Low p fine.	r. t lens lasticity; sand is					Firm to Stiff* Very Stiff				
9.5 -			SW	Gravelly fine to coarse SAND; t graded; gravel is fine to mediun subrounded, greywacke.	bluish grey. Well n, subangular to					Dense to Very Dense	/12//12/16/14/8 for 40 mm N=50+	8		
10. 0 - - - 10.5-	Μ/COLLUVIUM		GM	Silty sandy fine to medium GRA graded, angular to subrounded, is fine to coarse.	WEL; grey. Poorly greywacke; sand				м	Dense				
11. 0	ALLUVIU		ML	SILT; grey. Low plasticity.						Very Stiff to	6/13//12/13/8/7 N=40			
11.5			_OL SW	Organic SILT with some sand a brownish grey. Low plasticity; s coarse; gravel is fine to mediun subrounded, greywacke. Gravelly fine to coarse SAND w	and trace gravel; and is fine to n, subangular to vith some silt; grey.	• • • • • • • • • • • • • • • • • • •				<u>Hard</u>	ļ			
12.0- 12.0-			SM	Well graded. Gravel is fine to m to subrounded. Silty fine SAND; grey. Poorly gr	aded.					Medium	1/2//3/4/5/8 N=20			
12.5 12.5 			GM	Silty fine to medium GRAVEL v grey. Poorly graded, angular to greywacke; sand is fine to coars	vith some sand; subrounded, se.					Dense				
										Medium Dense*	6/8//9/10/8/6			
			ML	SILT with some sand; grey spectrum low plasticity; sand is fine.	ckled with white.					Hard	N=33			
Mach Infer	ine b red b OPS	ore bas Oll	ehole i ed on	met target depth at 19.95 m. diagnostic properties.		F = BTS	FILL S = BL	JRIE	D T	OPSOI	L			

		-		GEO	L	00	6 O	F	B	OR	ING I	BH	07	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Da Hole Dep Drilling Meth Drilling Contrac	ent:0 ate:0 oth:1 iod:F tor:0	Gillies (8/09/2 9.95 n Rotosoi Griffiths	Grou ?1 n nic s Dri	p Lir lling	nited Er Loge	Core nergy Trans ged By/Rev	Diame sfer Ra viewed Latite ongite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1032 ude: 175.1322	44 242
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	ИС	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 14.5			ML	SILT with some sand; grey spec Low plasticity; sand is fine.	ckled with white.					Hard				
- - 15. 0 - -			ML GM	Sandy SILT; grey. Low plasticity Silty fine to medium GRAVEL v grey with red and greenish grey	/; sand is fine. /ith some sand; mottles. Poorly					Hard	12/38 for 70 mm N=50+			
15.5- 16. 0 - -	MUIVU			graded, angular to subangular, fine to coarse.	greywacke; sand is					Very Dense	18/32 for 75 mm N=50+			
- - 17. 0 - - -	UVIUM/COLLL		ML	SILT brownish grey. Low plastic	sity.				м	Very Stiff to Hard*				
	ALLI		GW ML ML ML SM	Fine to coarse GRAVEL with so brownish grey. Well graded, and subrounded; sand is fine to coar Sandy SILT; brownish grey. Low fine to coarse. SILT; brownish grey. Low plasti SILT with some gravel and sand Low plasticity; gravel is fine to r subrounded, greywacke; sand is SILT with trace sand; grey. Low fine to coarse. Silty fine to coarse SAND with s Well graded; gravel is fine to re to subrounded, greywacke and SILT with trace sand; grey. Low	ome silt and sand; gular to rse. v plasticity; sand is city. d; brownish grey. nedium, angular to s fine to coarse. v plasticity; sand is some gravel; grey. edium, subangular chert.					Dense* Very Stiff Medium Dense*	10/8//5/6/5/7 N=23			
				fine to medium.	plactory, card is					Very Stiff	1/1//3/6/5/15 N=29			
MACHINE BORING BH LOGS				End of Hole Depth: 19.95 m Termination: Target depth										
Hotel Hotel	red b	ore ase OIL	nole i ed on	met target depth at 19.95 m. diagnostic properties.		F = BT	: FILL S = Bl	JRIE	DTO	OPSOI	L			

		-	Λ	GEO	L	0	G	6 O	F	В	OR	ING I	BH	08	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clie Da Hole Dep Drilling Meth Drilling Contract	ent ate oth od tor	: G : 0 : 1 : R : G	illies (8/09/2 9.54 m otosor	Grou 1 n nic s Dril	p Lir Iling	nited Er Log	Core nergy Trans ged By/Rev I	Diame sfer Ra viewed Latite Longite	eter: 83 mm atio: 89 % By: LF+MR / ude: -41.1026 ude: 175.1306	CM 647 689
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	lod Svmhol		Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
0.5	<u></u>		ML ML	[TOPSOIL] SILT with trace sand greyish brown. Low plasticity; sa SILT with trace gravel and rooth Low plasticity; gravel is fine to n greywacke. 0.65 m - Rootlets cease.	d and rootlets; light and is fine. ets; light brown. nedium, angular, nish grey. Low						Soft*				
1.5 - - - 2.0 - - - - - - - - - - - - - - - - - - -				plasticity; sand is fine.							Firm to Stiff	0/2//1/3/3/3 N=10			
3.0	M/COLLUVIUM		ML	Sandy SILT; greyish brown.Low fine.	r plasticity; sand is					м	Stiff*	0/0//1/1/2/2 N=6			
4.0	ALLUVIU		SP	Fine to medium SAND with son Poorly graded. SILT with some sand; grey. Lov fine.	ne silt; dark grey. v plasticity; sand is						Loose to Medium Dense*	1/2//2/3/3/3 N=11			
5.5			GP ML GP ML	Sandy fine to medium GRAVEL grey. Poorly graded, angular to greywacke; sand is fine. Sandy SILT; grey. Low plasticity Sandy fine to medium GRAVEL dark grey. Poorly graded, subar subrounded, greywacke; sand is Sandy SILT with trace gravel; g sand is fine; gravel is fine to coa greywacke. Sandy medium to coarse GRAV orange. Poorly graded, angular greywacke; sand is fine to coarse	with trace silt; subangular, <u>(; sand is fine.</u> with trace silt; igular to s fine to coarse. rey. Low plasticity; arse, angular, <u>(EL; brownish</u> to subrounded, se.					D	Loose* Stiff* Loose* Stiff* Medium Dense	1/2//2/3/3/3 N=11			
	ine t OPS rred	oore OIL fror	SW hole r m diag	met target depth at 19.54 m.							Medium Dense*				

				GEO	L	.0G	i 0	F	B	OR	ING I	ЗH	08	
			Ga Ma 190	bites Block ymorn Road Maymorn)71.000.001	Cli D Hole De Drilling Metl Drilling Contrac	ent : G ate : 0 pth : 1 hod : R ctor : G	illies (3/09/2 9.54 m otosor riffiths	Grou 1 n nic 5 Dril	p Lir lling	nited Er Loge	Core nergy Trans ged By/Rev L	Diame sfer Ra iewed Latitu .ongitu	eter: 83 mm atio: 89 % By: LF+MR / ude: -41.1026 ude: 175.1306	CM 47 589
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
-			SW	Gravelly fine to coarse SAND w brown. Well graded; gravel is fin angular to subangular, greywac	ith trace silt; light ne to coarse, ke.					Medium Dense*	I			
7.5 -		h	GP	Sandy medium to coarse GRAV light brown. Poorly graded, suba subrounded, greywacke; sand is	/EL with trace silt; angular to s fine to coarse.				D	Very Dense	10/40 for 70 mm N=50			
8.0			SP	Gravelly medium to coarse SAN light brown. Poorly graded; grav medium, angular to subangular	ID with some silt; el is fine to greywacke.				м	Very Dense*				
8.5 - - - 9.0- - 9.5 -			GW	Sandy fine to coarse GRAVEL of brown speckled with white. Wel to subangular, greywacke; sand coarse.	with some silt; light l graded, angular l is medium to				D	Very Dense	9/13//7/13/30 for 75mm N=50+			
- 10. 0 	COLLUVIUM		SW	Gravelly fine to coarse SAND w brown speckled with white. Wel fine to medium, angular to suba greywacke.	ith some silt; light l graded; gravel is ngular,					Dense to Very Dense*				
- - - - - - - - -			ML	SILT with trace sand; brownish plasticity; sand is fine.	orange. Low				м	Stiff	1/5//4/3/3/4 N=14			
EMPLATE 2.GDT 1 			SM SM	Silty fine SAND; light grey. Pool Silty fine to coarse SAND with t	ly graded. race gravel; grey.					Medium Dense*				
- 12.0 12.0 -			SP GW GM	subangular, greywacke. Fine to medium SAND with son grey. Poorly graded; gravel is fir subrounded to rounded, greywa Fine to coarse GRAVEL with so grey. Well graded, angular to su	ne silt and gravel; ne to coarse, cke. ome silt and sand; ubrounded					Very Dense	7/12//14/16/20 for 65mm N=50+			
				greywacke; sand is fine to coars Silty fine to medium GRAVEL w grey. Poorly graded, angular to greywacke; sand is fine to coars	se. //ith some sand; subangular, se.				M-W	Very Dense*	5/14//18/32 for			
ACHINE BO			GW	Fine to coarse GRAVEL with so grey. Well graded, angular to su greywacke; sand is fine to coars	ome sand and silt; Ibrounded, se.					Very Dense	70mm N=50+			
Hach HOH HOH HOH HOH HOH HIN HIN HIN HIN HIN HIN HIN HIN HIN HI	ine b OPS rred	ore OIL fror	hole i n diag	net target depth at 19.54 m.										

			Λ	GEO	L	.00	60	F	В	OR	ING	BH	08	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Meth Drilling Contrac	ent:G ate:03 pth:19 nod:R ctor:G	illies (8/09/2 9.54 n otosoi riffiths	Grou 1 n nic s Dri	ıp Lir Iling	nited Er Loge	Core nergy Tran ged By/Rev	Diame sfer Ra /iewed Latite _ongite	eter: 83 mm atio: 89 % IBy: LF+MR / ude: -41.1026 ude: 175.1306	CM 47 589
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTI	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 14.5-			SW GM	Fine to coarse SAND with some grey. Well graded, gravel is fine subangular to rounded, greywar Silty fine to medium GRAVEL v grey. Poorly graded, angular to greywacke and chert; sand is fi	e gravel and silt; to coarse, cke. vith minor sand; aubangular, ne to coarse.				M-W	Very Dense* Very Dense*				
15. 0 			GW	Sandy fine to coarse GRAVEL grey. Well graded, subangular t greywacke; sand is fine to coars	with minor silt; o subrounded, se.					Very Dense	16/34 for 65mm N=50+			
	Þ		ML GP ML	SILT with some gravel; grey. Lo is fine to medium, subangular to greywacke. Fine to medium GRAVEL with silt; grey. Poorly graded; subrou	w plasticity; gravel o rounded, minor sand and inded to rounded,				м-м	Hard* Very Dense*				
	/INM/COLLUVIU		GW	greywacke; sand is medium to SILT with some gravel and min- plasticity; gravel is fine to coars rounded, greywacke; sand is fin Fine to coarse GRAVEL with sc grey. Well graded, subangular gravecke; sand is fine to coars	coarse. or sand; grey. Low e, subangular to le to coarse. ome silt and sand; o subrounded,					Hard*	6/8//12/12/26 for 60mm N=50+			
- - - 17.5- - -	ALLUN		ML	SILT with minor gravel and trac Low plasticity; gravel is fine to r subangular to subrounded; grey	e sand; brown. nedium, wacke and chert.				м	Hard*				
18.0- 18.0- - - - - - - - - - - - - - - - - - -			GW	plasticity; gravel is fine to mediu subrounded, greywacke; sand i Fine to coarse GRAVEL with m grey. Well graded, angular to su greywacke; sand is fine to coars	in, angular to s fine to coarse. inor silt and sand; ubrounded, se.				w	Very Dense	9/12//50 for 75mm N=50+			
				SILT with some sand and mino plasticity; gravel is fine to coars subrounded, greywacke; sand i	r grave; grey. Low e, angular to s fine to coarse.				м	Hard				
רַיַּיָּרָ – 19.5−						NB					50 for 40mm			
	1		<u> </u>	No recovery in SPT. End of Hole Depth: 19.54 m Termination: Target depth				<u> </u>	<u> </u>	<u> </u>	N=50+	}		
≝ H H H H H H H H H H H H H H H H H H H	ine b OPS	ore OIL	hole i	met target depth at 19.54 m.										
if * Infe	rred	fror	m diag	gnostic properties.										

		-	\wedge	GEO	L	.00	6 O	F	B	OR	ING I	BH	09	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Clin D Hole De Drilling Meth Drilling Contrac	ent : G ate : 10 pth : 19 nod : R stor : G	illies (0/09/2 9.55 n otosor	Grou 1 n nic s Dril	p Lir lling	nited Er Log	Core nergy Tran ged By/Rev I	Diame sfer Ra viewed Latite ongite	eter: 83 mm atio: 89 % By: MR / CM ude: -41.1016 ude: 175.1300	53)45
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	ON	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
0.5 -	Т		ML ML ML	[TOPSOIL] SILT with some gra dark brown. Low plasticity; grav angular to subrounded, greywad SILT with some gravel; brownis plasticity; gravel is fine to coars subrounded; greywacke. Sandy SILT with some gravel; th Low plasticity; sand is fine to plasticity; sand is fine to plasticity.	vel and organics; el is fine to coarse, cke. h orange. Low e, angular to prownish orange. edium; gravel is brounded				м	Firm to Stiff* Stiff*				
1.5 -			GM	Sandy fine to coarse GRAVEL	th some sand; light r to subrounded, se. with minor silt; light				M-W	Dense* Very Dense	7/10//28/22 for 35mm N=50+			
2.5 - - - 3.0 -	UM		GP	brownish grey. Well graded, sul subrounded, greywacke; sand is Sandy medium to coarse GRAV light brownish grey. Poorly grad subrounded, greywacke; sand is	bangular to s fine to coarse. /EL with trace silt; ed, subangular to s fine to coarse.					Very Dense	6/8//12/20/18 for 50mm			
3.5	ALLUVIUM/COLLUVII		SW	Gravelly fine to coarse SAND w brownish grey. Well graded; gra coarse, subangular to subround	rith trace silt; light avel is fine to led, greywacke.				м	Very Dense*	N=50+			
4.5			GW	Sandy fine to coarse GRAVEL grey. Well graded, subangular t greywacke; sand is medium to o	with minor silt; light o subrounded, coarse.						4/8//12/20/14/4 for 75mm N=50+			
5.5 - - - 6.0 - - - 6.5 - - - - - - - - - - - - - - - - - - -									M-W	Very Dense	6/7//8/34/8 for 10mm N=50+			
	ine b OPS	oore OIL froi	ehole i L. m diag	net target depth at 19.55 m. nostic properties.										

			\wedge	GEO	L	.00	6 O	F	B	OR	ING I	BH	10	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Meth Drilling Contrac	ent : G ate : 0 pth : 1 nod : R ctor : G	illies (9/09/2 9.522 otosor	Grouj 1 m ic 5 Dril	o Lir ling	nited Er Loge	Core nergy Trans ged By/Rev I	Diame sfer Ra viewed Latite Latite	eter: 83 mm atio: 89 % IBy: LF / CM ude: -41.1004 ude: 175.1310	48 075
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
	F		ML ML	[TOPSOIL] SILT with some gra dark brown. Low plasticity; grav angular to subrounded, greywar SILT with some gravel and trac- brown. Low plasticity; gravel is angular to rounded, greywacke; subrounded with maximum dim	vel and rootlets; el is fine to coarse, cke. e cobble; yellowish ine to coarse, cobble is ension of 80 mm.					Firm to Stiff*				
1.0			GW	Fine to coarse GRAVEL with so brown. Well graded, angular to greywacke; sand is fine to coars	me sand and silt; rounded, se.				М	Very Dense	9/18//28/22 for 55mm N=50+			
2.5 - - - 3.0 - - - - - - - - - - - - - - - - - - -	COLLUVIUM		GW	Fine to coarse GRAVEL with m brown. Well graded, angular, gr fine to coarse.	inor silt and sand; eywacke; sand is				D		5/5//8/12/30 for 75mm N=50+			
4.0	ALLUVIUM/		GM	Silty fine to coarse GRAVEL wi	h some sand;				М	Dense to Very Dense	7/7//3/7/3/22 N=45			
5.5 - - - 6.0- - -			GW	greywacke; sand is fine to coars Fine to coarse GRAVEL with so brown. Well graded, angular, gr fine to coarse.	se. ome silt and sand; eywacke; sand is				D	Very Dense	8/10//16/34 for 70mm N=50+			
6.5 - - - - - - - - - - - - - - - - - - -	ine t	ore	ehole r	6.7 - 6.9 m - Colour becomes d net target depth at 19.522 m.	ark brown.									
T = T * Infe	OPS	OIL fror	 m diac	nostic properties.										

		F	Λ	GEO	L	.OG	i 0	F	B	OR	ING I	BH	10	
			Ga Ma 190	abites Block ymorn Road Maymorn 071.000.001	Cli D Hole De Drilling Meth Drilling Contrac	ent:G ate:09 pth:19 nod:R tor:G	illies (9/09/2 9.522 otosor riffiths	Grou 1 m nic 5 Dril	p Lir ling	nited Er Loge	Core lergy Trans ged By/Rev	Diame sfer Ra viewed Latite	eter: 83 mm atio: 89 % IBy:LF/CM ude: -41.1004 ude: 175.1310	48)75
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	NC	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Notes
- - - 14.5- -			GW	Sandy fine to coarse GRAVEL brown. Well graded, subrounde greywacke; sand is fine to coars	with minor silt; d to rounded, se.					Very Dense				
- - 15. 0 - - - - 15.5			GW	Fine to coarse GRAVEL with so brown. Well graded, angular to greywacke; sand is fine to coars	ome silt and sand; subangular, se.						9/24//33/27 for 75mm N=50+			
16.0	Σ			15.6 m - Becomes mottled with orange brown.	light and dark					Very Dense				
	νιυΜ/COLLUVIU		GW	Fine to coarse GRAVEL with m Well graded, subangular to rour sand is coarse.	inor sand; brown. nded, greywacke;				м	Very Dense	25/25 for 65mm N=50+			
	ALLU		GW	17.3 m - Trace cobble encounte cobble dimension is 70 mm. Fine to coarse GRAVEL with m brown. Well graded, angular to grawwacke: sand is fine to coar	ered. Maximum inor sand and silt; rounded,					Very Dense*				
18. 0 			GW	Fine to coarse GRAVEL with m Well graded, angular to rounded is fine to coarse.	inor sand; brown. d, greywacke; sand					Very Dense	28/22 for 30mm N=50+			
19. 0			GW	Fine to coarse GRAVEL with so sand; brown. Well graded, angu greywacke; sand is fine to coars	ome silt and minor llar to rounded, se.					Very Dense				
19.5			<u> </u>	No recovery in SPT. End of Hole Depth: 19.522 m Termination: Target depth					<u> </u>	<u> </u>	50 for 25mm N=50+	<u>}</u>		
Machi T = To * Infer	ine I OPS rred	bore SOIL froi	ehole i m diag	net target depth at 19.522 m. gnostic properties.										

APPENDIX 6:

Cone Penetration Test Plots

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:53 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:53 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:54 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:54 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:55 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:55 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:12:56 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

ENGEO Le 2-4

ENGEO Ltd Level 18, Plimmer Tower 2-6 Gilmer Terrace Wellington 6011

Project: Geotechnical Assessment

Overlay Normalized Plots

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 20/10/2021, 3:54:15 pm Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\05_Analysis_Design\Gabites - Liq analysis.clq

APPENDIX 7:

Site Specific Geological Map

Legend

- Shallow Sandstone (less than 3 m to rock)
- 🙆 Alluvium
- Colluvium (rock more than 3 m from surface)
- Fill (more than 1 m thick)
- Variable Colluvium / Alluvium
- landslide Debris

0 50 m 100 m

LINZ CC BY 4.0 © Imagery Basemap contributors

Produced by Datanest.earth

Title: Site Specific Geological	Mapping
---------------------------------	---------

Client: Gillies Group Ltd		
Project: Gabites Block, Upper Hutt	Drawn: LF	Figure No:
Date: 29-07-2021	Checked:	Size: A3
Proj No: 19071.000.001 Overall pag	Scale: e ନର୍ଭିଜାରିକ 455	Version:

APPENDIX 8: Geological Cross Sections

DISTANOCE (M)

Image: solution of the second seco	
(neost)	
Ineast) Ineast)	_
A measure of the second sec	-
(heoski)	
heast)	
(heoski) = (1 + 1000 @ A3 (Hovizonta))	_
heast)	
heast)	
heast)	
30 (m) 1:500@A3 (Vevtical)	
SE SE SE SE SE SE SE SE SE SE SE SE SE S	
SE SE SE SE SE SE SE SE SE SE	-
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE SE SE SE S	
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE SE SE SE S	
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE	_
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE	
SE SE SE SE SE SE SE SE SE SE	2
SE SE SE SE SE SE SE SE SE SE	
SE 	-
DE D D D D D D D D D D D D D	-
30 (m) 1:500@Pt3 (Ve/tical)	
2 (m) 1:1000@A3 (Hovizontal)	
30 (m) 1:1000 C A3 (Hovizonta)	
30 (m) 1:500@P3 (Ve/tical)	
30 (m) 1:500@P3 (Vertical)	
30 (m) 1:500@P3 (Vertical)	-
30 (m) 1:500@P3 (Vertical)	-
30 (m) 1:500@P3 (Ve/tical)	_
30 (m) 1:500@P3 (Ve/tical)	
20 (m) 1:500@P3 (Ve/tical) 40 50(m) 1:1000@P3 (Hovizontal)	
20 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
20 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
20 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	-
20 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	-
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	-
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal)	_
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	
30 (m) 1:500@P13 (Vertical) 40 50(m) 1:1000@P13 (Hovizontal	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	
30 (m) 1:500@Pt3 (Vertical) 40 50(m) 1:1000@Pt3 (Hovizontal	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	-
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	-
30 (m) 1:500@Pt3 (Vertical) 40 50(m) 1:1000@Pt3 (Hovizontal	
30 (m) 1:500@P3 (Vertical) 40 50(m) 1:1000@P3 (Hovizontal	
40 50(m) 1=1000@A3 (Hovizonta)	
40 50(m) 1=1000@A3 (Hovizonta)	1
40 50(m) 1=1000@AB (Hovizonta)	1
40 50(m) 111000015 (11011201101	1
)

APPENDIX 9:

Site Subsoil Class Map

Legend

- 🔲 Site Boundary
- 🕥 Inferred Class B Rock
- 🕥 Inferred Class C Shallow Soil
- 🕥 Inferred Class D Deep Soil

Produced by Datanest.earth

Title: Seismic Site Subsoil	Class	
Client: Gillies Group Ltd		
Project: Gabites Block, Upper Hutt	Drawn: LF	Figure No: Size: A3
Date: 29-07-2021	Checked:	
Proj No: 19071.000.001 Overall page	Scale: n liନ୍ନିଚିଚ୍ଚି ପ୍ୟି63	Version:

APPENDIX 10:

Liquefaction Analysis Results

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:53 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:54 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:54 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:55 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:56 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:56 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:08:57 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:27 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:28 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:28 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:29 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:29 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:30 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

CLiq v.2.3.1.15 - CPT Liquefaction Assessment Software - Report created on: 8/10/2021, 10:11:30 am Project file: Z:\Projects\19001 to 19100\19071 - Gabites Block\04_Field_Lab Info\CPT\Gabites - Liq analysis.clq

APPENDIX 11: Slope Hazard Map

Legend Slope (deg)

lope (deg)			
	<10 degrees – slope instability very unlikely		
	10 - 17.5 degrees - slope instability unlikely		
	17.5 – 25 degrees – slope instability possible		
	25 – 32.5 degrees – slope instability likely under eq/rainfall		
	32.5 – 37.5 degrees - slope instability likely		
	>37.5 deg – slope instability almost certain		

Produced by Datanest.earth

のとなく目	Title: Slope Hazard Model				
北京に変に	Client: Gillies Group Ltd				
ARTIN MARK AND	Project: Gabites Block, Upper Hutt	Drawn: LF	Figure No: Size: A3		
	Date: 29-07-2021	Checked:			
「ことのない」とない	Proj No: 19071.000.001 Overall page	Scale: n ଧାର୍ଲିପିଡ଼ ି/0480	Version:		

APPENDIX 12:

Hazard Risk Class Map

Legend

- Development Risk Class 1
- Development Risk Class 2
- Development Risk Class 3
- Development Risk Class 4
 Development Risk Class 5
- Development Risk Class
 Site Boundary

0 50 m 100 m

LINZ CC BY 4.0 © Imagery Basemap contributors

Produced by Datanest.earth

Title: Development Risk Clo	isses
-----------------------------	-------

Client: Gillies Group Ltd	Client: Gillies Group Ltd			
Project: Gabites Block,	Drawn: Figure	Figure		
Upper Hutt	LF No: 11	No: 11		
Date: 03-11-2021	Checked: RJ	Size: A3		
Proj No: 19071.000.001	Scale:	Version:		
Overall page	nilନିNoCP482	2		